Project description:The goals were to investigate differences in gene expression between wild type and Gpr120 knockout mouse interscapular brown adipose tissue
Project description:Histones were isolated from brown adipose tissue and liver from mice housed at 28, 22, or 8 C. Quantitative top- or middle-down approaches were used to quantitate histone H4 and H3.2 proteoforms. See published article for complimentary RNA-seq and RRBS datasets.
Project description:Brown adipose tissue (BAT) has in recent times been rediscovered in adult humans, and together with work from preclinical models, shown to have the potential of providing a variety of positive metabolic benefits. These include improved insulin sensitivity and reduced susceptibility to obesity and its various co-morbidities. As such, its continued study could offer insights to therapeutically modulate this tissue to improve metabolic health. It has been reported that adipose-specific deletion of the gene for protein kinase D1 (Prkd1) enhances mitochondrial respiration and improves whole-body glucose homeostasis. We sought to determine whether these effects were mediated specifically through brown adipocytes using a Prkd1 brown adipose tissue (BAT) Ucp1-Cre-specific knockout mouse model, Prkd1BKO. We unexpectedly observed that upon both cold exposure and beta-3-AR agonist administration, Prkd1 loss in BAT did not alter canonical thermogenic gene expression or adipocyte morphology. We took an unbiased approach to assess whether other signaling pathways were altered. RNAs from cold-exposed control and Prkd1BKO were subjected to RNA-Seq analysis. These studies revealed that myogenic gene expression is altered in Prkd1BKO BAT after both acute (8 hr) and extended (4 day) cold exposure. Given that brown adipocytes and skeletal myocytes share a common precursor cell lineage expressing myogenic factor 5 (Myf5), these data suggest that loss of Prkd1 in BAT may alter the biology of preadipocytes in this depot. The data presented herein clarify the role of Prkd1 in BAT thermogenesis and present new avenues for the further study of Prkd1 function in BAT.
Project description:The experiment was designed to determine the gene expression changes cultured brown adipocytes in response to the inflammatory stimulus of LPS treatment. Both wild type and TLR4 knockout cells were applied to enable assessment of the contribution of TLR4 to the response.
Project description:We report the RNA expression of the mature brown fat from 6 week old wild type (WT) and PHOSPHO1 knockout (KO) mice. Mature brown fat was isolated from brown adipose tissue after collagenase digestion. Increased expression of mitochondrial genes is found in KO brown fat.
Project description:We performed RNA sequencing on brown adipose tissue in wild-type and Letmd1 knockout mice to investigate the gene expression patterns in Letmd1 deficient mice.
Project description:To identify transcriptomic differences in interscapular brown adipose tissue depots from HFD-challenged wild-type (WT) vs. Axl KO (whole-body Axl Receptor knockout) mice