Project description:Despite a variety of seasoning ingredients in diets, little is known about their cooperative effect on animal metabolism. We fed rats a diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same diet without seasonings (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. To assess the mechanisms underlying this phenotype, we conducted transcriptome analyses of the hypothalamic–pituitary axis (HP), liver and white adipose tissue (WAT). Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Project description:Despite a variety of seasoning ingredients in diets, little is known about their cooperative effect on animal metabolism. We fed rats a diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same diet without seasonings (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. To assess the mechanisms underlying this phenotype, we conducted transcriptome analyses of the hypothalamic–pituitary axis (HP), liver and white adipose tissue (WAT). Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Project description:Despite a variety of seasoning ingredients in diets, little is known about their cooperative effect on animal metabolism. We fed rats a diet containing 30 wt.% instant noodle with a 26% fat-to-energy ratio for 30 days (N-group). Compared with rats that were fed the same diet without seasonings (C-group), the N-group showed lower liver triacylglycerol levels and higher fecal cholesterol levels. To assess the mechanisms underlying this phenotype, we conducted transcriptome analyses of the hypothalamic–pituitary axis (HP), liver and white adipose tissue (WAT). Our results suggest that these ingredients may affect lipid homeostasis via the HP axis.
Project description:Non-alcoholic fatty liver disease (NAFLD) is a major problem in obese peoples and caused by unbalanced uptake of fatty acid. Novel drug identification is necessary to develop effective therapies. We combine LOPAC® and High-Content system to identify compounds significantly reducing intracellular lipid droplets after high fat medium (HFM) treatment. Among 1280 compounds, 5 show efficacy in lipid droplet reduction. To construct the underlying regulatory network, whole-genome transcriptomic, pathway, and connectivity map analysis are performed.
Project description:Glyphosate-based herbicides are the major pesticides used worldwide. There is an intense debate on the estrogenic effects of their ingredients. We have compared the estrogenic effects of glyphosate (the active principle), polyethoxylated tallowamine (a co-formulant), and a commercial formulations containing different co-formulants to those of estradiol and bisphenol A in the MCF-7 human breast cancer cell line. The gene expression profiles were determined using the Affymetrix Human Transcriptome 2.0 Array.