Project description:Anaerobic digestion is a popular and effective microbial process for waste treatment. The performance of anaerobic digestion processes is contingent on the balance of the microbial food web in utilizing various substrates. Recently, co-digestion, i.e., supplementing the primary substrate with an organic-rich co-substrate has been exploited to improve waste treatment efficiency. Yet the potential effects of elevated organic loading on microbial functional gene community remains elusive. In this study, functional gene array (GeoChip 5.0) was used to assess the response of microbial community to the addition of poultry waste in anaerobic digesters treating dairy manure. Consistent with 16S rRNA gene sequences data, GeoChip data showed that microbial community compositions were significantly shifted in favor of copiotrophic populations by co-digestion, as taxa with higher rRNA gene copy number such as Bacilli were enriched. The acetoclastic methanogen Methanosarcina was also enriched, while Methanosaeta was unaltered but more abundant than Methanosarcina throughout the study period. The microbial functional diversity involved in anaerobic digestion were also increased under co-digestion.
Project description:Bacteriophage – host dynamics and interactions are important for microbial community composition and ecosystem function. Nonetheless, empirical evidence in engineered environment is scarce. Here, we examined phage and prokaryotic community composition of four anaerobic digestors in full-scale wastewater treatment plants (WWTPs) across China. Despite relatively stable process performance in biogas production, both phage and prokaryotic groups fluctuated monthly over a year of study period. Nonetheless, there were significant correlations in their α- and β-diversities between phage and prokaryotes. Phages explained 40.6% of total prokaryotic community composition, much higher than the explainable power by abiotic factors (14.5%). Consequently, phages were significantly (P<0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed that phage-prokaryote pairs were deeply rooted, and two network modules were exclusively comprised of phages, suggesting a possibility of co-infection. Those results collectively demonstrate phages as a major biotic factor in controlling bacterial composition. Therefore, phages may play a larger role in shaping prokaryotic dynamics and process performance of WWTPs than currently appreciated, enabling reliable prediction of microbial communities across time and space.
Project description:In this study, microbial communities from triplicate leach-bed anaerobic bioreactors digesting grass were analysed. Each reactor comprised two microbial fractions, one immobilized on grass (biofilm) and the other in a planktonic state present in the leachate. Microbial communities from the two fractions were systematically investigated for community composition and function. This was carried out using DNA, RNA and protein co-extraction. The microbial structure of each fraction was examined using 16S rRNA deep sequencing, while the active members of the consortia were identified using the same approach on cDNA generated from co-extracted RNA samples. Microbial function was investigated using a metaproteomic workflow combining SDS-PAGE and LC-MS/MS analysis.
2018-10-23 | PXD007956 | Pride
Project description:microbial community diversities of reactor using leachate
| PRJNA390684 | ENA
Project description:Anaerobic reactor microbial community sequencing
| PRJNA762280 | ENA
Project description:microbial community diversities of anaerobic digestion
| PRJNA877869 | ENA
Project description:microbial community diversities of anaerobic sludge
| PRJNA936412 | ENA
Project description:microbial community diversities of anaerobic sludge