Project description:Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation as nucleosomes modulate DNA access by their positioning along the genome. A cell population nucleosome map requires two observables: nucleosome positions along the DNA (“Where?”) and nucleosome occupancies across the population (“In how many cells?”). All available genome-wide nucleosome mapping techniques are yield methods as they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or non-nucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby crossvalidating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9 bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (± SD). Depending on nucleosome position calling procedures, there are 57-60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but with increased presence of the nucleosome-evicting RSC chromatin remodeling complex there and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Project description:Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation as nucleosomes modulate DNA access by their positioning along the genome. A cell population nucleosome map requires two observables: nucleosome positions along the DNA (“Where?”) and nucleosome occupancies across the population (“In how many cells?”). All available genome-wide nucleosome mapping techniques are yield methods as they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or non-nucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby crossvalidating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9 bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (± SD). Depending on nucleosome position calling procedures, there are 57-60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but with increased presence of the nucleosome-evicting RSC chromatin remodeling complex there and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Project description:Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation as nucleosomes modulate DNA access by their positioning along the genome. A cell population nucleosome map requires two observables: nucleosome positions along the DNA (“Where?”) and nucleosome occupancies across the population (“In how many cells?”). All available genome-wide nucleosome mapping techniques are yield methods as they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or non-nucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby crossvalidating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9 bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (± SD). Depending on nucleosome position calling procedures, there are 57-60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but with increased presence of the nucleosome-evicting RSC chromatin remodeling complex there and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Project description:H3 ChIP and input DNA were hybridized to Affymetrix GeneChip S. cerevisiae Tiling 1.0R Array Genome-wide mapping of nucleosomes generated by micrococcal nuclease (MNase) suggests that yeast promoter and terminator regions are very depleted of nucleosomes, predominantly because their DNA sequences intrinsically disfavor nucleosome formation. However, MNase has strong DNA sequence specificity that favors cleavage at promoters and terminators and accounts for some of the correlation between occupancy patterns of nucleosomes assembled in vivo and in vitro. Using an improved method for measuring nucleosome occupancy in vivo that does not involve MNase, we confirm that promoter regions are strongly depleted of nucleosomes, but find that terminator regions are much less depleted than expected. Unlike at promoter regions, nucleosome occupancy at terminators is strongly correlated with the orientation of and distance to adjacent genes. In addition, nucleosome occupancy at terminators is strongly affected by growth conditions, indicating that it is not primarily determined by intrinsic histone-DNA interactions. Rapid removal of RNA polymerase II (Pol II) causes increased nucleosome occupancy at terminators, strongly suggesting a transcription-based mechanism of nucleosome depletion. However, the distinct behavior of terminator regions and their corresponding coding regions suggests that nucleosome depletion at terminators is not simply associated with passage of Pol II, but rather involves a distinct mechanism linked to 3’ end formation.
Project description:Mapping of nucleosomes, the basic DNA packaging unit in eukaryotes, is fundamental for understanding genome regulation as nucleosomes modulate DNA access by their positioning along the genome. A cell population nucleosome map requires two observables: nucleosome positions along the DNA (“Where?”) and nucleosome occupancies across the population (“In how many cells?”). All available genome-wide nucleosome mapping techniques are yield methods as they score either nucleosomal (e.g., MNase-seq, chemical cleavage-seq) or non-nucleosomal (e.g., ATAC-seq) DNA but lose track of the total DNA population for each genomic region. Therefore, they only provide nucleosome positions and maybe compare relative occupancies between positions but cannot measure absolute nucleosome occupancy, which is the fraction of all DNA molecules occupied at a given position and time by a nucleosome. Here, we established two orthogonal and thereby crossvalidating approaches to measure absolute nucleosome occupancy across the Saccharomyces cerevisiae genome via restriction enzymes and DNA methyltransferases. The resulting high-resolution (9 bp) map shows uniform absolute occupancies. Most nucleosome positions are occupied in most cells: 97% of all nucleosomes called by chemical cleavage-seq have a mean absolute occupancy of 90 ± 6% (± SD). Depending on nucleosome position calling procedures, there are 57-60,000 nucleosomes per yeast cell. The few low absolute occupancy nucleosomes do not correlate with highly transcribed gene bodies, but with increased presence of the nucleosome-evicting RSC chromatin remodeling complex there and are enriched upstream of highly transcribed or regulated genes. Our work provides a quantitative method and reference frame in absolute terms for future chromatin studies.
Project description:Purpose: The exosome plays major roles in RNA processing and surveillance but the in vivo target range and substrate acquisition mechanisms remain unclear. We applied an in vivo cross-linking technique coupled with deep sequencing (CRAC) that captures transcriptome-wide interactions between individual yeast exosome subunits and their targets in a living cell. Methods: We apply CRAC to HTP-tagged proteins (HTP: His6 - TEV cleavage site - two copies of the z-domain of Protein A): Two nucleases (Rrp44, Rrp6) and two structural subunits (Rrp41, Csl4) of the yeast exosome. At least two independent experiments were performed in each case and analyzed separately. We performed CRAC on wild-type (WT) Rrp44 and two catalytic mutants, rrp44-endo (D91N, E120Q, D171N, D198N) and rrp44-exo (D551N). We further developed CRAC using cleavable proteins (split-CRAC) to compare endonuclease and exonuclease targets of Rrp44. Plasmids designed for split-CRAC contain a PreScission protease cleavage site (PP) inserted between aa 241 and 242 in the RRP44 ORF to allow in vitro cleavage of purified protein, and a His6 tag to select the respective cleaved fragment. Results: Analysis of wild-type Rrp44 and catalytic mutants showed that both the CUT and SUT classes of noncoding RNA, snoRNAs and, most prominently, pre-tRNAs and other Pol III transcripts are targeted for oligoadenylation and exosome degradation. Unspliced pre-mRNAs were also identified as targets for Rrp44 and Rrp6. CRAC performed using cleavable proteins (split-CRAC) revealed that Rrp44 endonuclease and exonuclease activities cooperate on most substrates. Mapping oligoadenylated reads suggests that the endonuclease activity may release stalled exosome substrates. Rrp6 was preferentially associated with structured targets, which frequently did not associate with the core exosome. This indicates that substrates can follow multiple pathways to the nucleases. Conclusion: Our study represents the first transcriptome-wide map of substrates for the yeast exosome nuclease complex.
Project description:We report the genome-wide localization of Sgo1p in mitosis of Saccharomyces cerevisiae using ChIP-seq. The high resolution mapping clearly shows a tripartite domain of Sgo1p in each mitotic chromosome. This domain requires the wildtype tension sensing motif (TSM) of histone H3.