Project description:Many, if not all, bacteria use quorum sensing (QS) to control gene expression and collective behaviours, and more recently QS has also been discovered in bacteriophages (phages). Phages can produce communication molecules of their own, or “listen in” on the host’s communication processes, in order to switch between lytic and lysogenic modes of infection. In this project, we studied the interaction of Vibrio cholerae, the causative agent of cholera disease, with the lysogenic vibriophage VP882. The lytic cycle of VP882 is induced by the QS molecule DPO (3,5-dimethylpyrazin-2-ol), however, the global regulatory consequences of DPO-mediated VP882 activation have remained unclear.
Project description:Large-genome bacteriophages (jumbo phages) of the Chimalliviriadae family assemble a nucleus-like compartment bounded by a protein shell that protects the replicating phage genome from host-encoded restriction enzymes and CRISPR/Cas nucleases. While the nuclear shell provides broad protection against host nucleases, it necessitates transport of mRNA out of the nucleus-like compartment for translation by host ribosomes, and transport of specific proteins into the nucleus-like compartment to support DNA replication and mRNA transcription. Here we identify a conserved phage nuclear shell-associated protein that we term chimallin C (ChmC), which adopts a nucleic acid-binding fold, binds RNA with high affinity in vitro and binds phage mRNAs in infected cells. ChmC also forms phase-separated condensates with RNA. Targeted knockdown of ChmC using mRNA-targeting Cas13d halts infections at an early stage. Taken together, our data suggest that the conserved ChmC protein acts as a chaperone for phage mRNAs, potentially stabilizing these mRNAs and driving their translocation through the nuclear shell to promote translation and infection progression.