Project description:Nickel is an essential component of many eukaryotic and prokaryotic metallo-enzymes. Due to its employment in many industrial applications, wastewaters from industrial plants often contain millimolar concentrations of Ni2+ that are toxic and life-threatening for many organism. Several lines of preliminary evidence suggest that members of the genus Sphingobium are able to grow in the presence of high concentrations of metal ions. We have isolated a novel Sphingobium strain (sp. ba1) able to grow in the presence of high concentrations (up to 20 mM) of NiCl2. Sequencing of its genome allowed the identification of several genes coding for proteins potentially involved in efflux-mediated resistance mechanisms. Here we use the RNA-seq approach to analyze the response of the Sphingobium sp. ba1 strain to high concentrations (10 mM) of Ni ions. Transcriptomic data show the differential expression of about one-hundred and twenty genes, most of which are up-regulated and encode proteins such as membrane proteins and components of metal efflux systems, enzymes involved in oxidative stress responses (catalases, peroxidases) and signal transduction systems.
Project description:Phylogenetic, microbiological and comparative genomic analysis was used to examine the diversity among members of the genus Caldicellulosiruptor with an eye towards the capacity of these extremely thermophilic bacteria for degrading the complex carbohydrate content of plant biomass. Seven species from this genus (C. saccharolyticus, C. bescii (formerly Anaerocellum thermophilum), C. hydrothermalis, C. owensensis, C. kronotskyensis, C. lactoaceticus, and C. kristjanssonii) were compared on the basis of 16S rRNA phylogeny and cross-species DNA-DNA hybridization to a whole genome C. saccharolyticus oligonucleotide microarray. Growth physiology of the seven Caldicellulosiruptor species on a range of carbohydrates showed that, while all could be cultivated on acid pre-treated switchgrass, only C. saccharolyticus, C. besci, C. kronotskyensis, and C. lactoaceticus were capable of hydrolyzing Whatman No. 1 filter paper. Two-dimensional gel electrophoresis of the secretomes from cells grown on microcrystalline cellulose revealed that species capable of crystalline cellulose hydrolysis also had diverse secretome fingerprints. The two-dimensional secretome of C. saccharolyticus revealed a prominent S-layer protein that appears to be also indicative of highly cellulolytic Caldicellulosiruptor species, suggesting a possible role in cell-substrate interaction. These growth physiology results were also linked to glycoside hydrolase and carbohydrate-binding module inventories for the seven bacteria, deduced from draft genome sequence information. These preliminary inventories indicated that the absence of a single glycoside hydrolase family and carbohydrate binding motif family appear to be responsible for some Caldicellulosiruptor species’ diminished cellulolytic capabilities. Overall, the genus Caldicellulosiruptor appears to contain more genomic and physiological diversity than previously reported, and is well suited for biomass deconstruction applications.
Project description:We report the isolation of the first bacterial strain, Sphingobium sp. AntQ-1, with the ability to grow on the oxy-PAH anthraquinone as sole carbon and energy source. We combine genomic, transcriptomic and metabolomic analysis to comprehensively elucidate the anthraquinone metabolic pathway and to identify key degradative genes.
Project description:Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-H+ symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9 % higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5’ coding sequences of SUC2, resulting in relocation of invertase to the cytosol. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 95 generations of anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11 % higher ethanol yield on sucrose in chemostat and batch cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. Deletion of AGT1, which had been duplicated during laboratory evolution, restored the growth characteristics of the unevolved iSUC2 strain. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes.
Project description:Investigation of whole genome gene expression level changes in Streptomyces sp. SirexAA-E (ActE) when grown on different carbon sources. The results of this study demonstrate that ActE upregulates a small number of genes specific for the utilization of the avaliable carbon source. Cellulolytic Streptomyces sp. SirexAA-E (ActE), isolated from the pinewood-boring wasp Sirex noctilio, has a genome enriched for biomass utilization. The secreted proteomes obtained from growth on pure polysaccharides catalyzed hydrolysis of cellulose, mannan, and xylan with specific activities comparable to Spezyme CP, a commercial cellulase preparation. During reaction of an ActE secretome with cellulose, reducing sugar release was markedly stimulated in the presence of O2. ActE also expresses and secretes an expanded repertoire of enzymes during growth on natural and pre-treated biomass. These results indicate a new microbial contribution to biomass utilization that is widely distributed in natural environments by insects
Project description:The search for new enzymes and microbial strains to degrade plant biomass is one of the most important strategies for improving the conversion processes in the production of environment-friendly chemicals and biofuels. In this study, we report a new Paenibacillus isolate, O199, which showed the highest efficiency for cellulose deconstruction in a screen of environmental isolates. Here, we provide a detailed description of the complex multi-component O199 enzymatic system involved in the degradation of lignocellulose. We examined the genome and the proteome of O199 grown on complex lignocellulose (wheat straw) and on microcrystalline cellulose. The genome contained 476 genes with domains assigned to carbohydrate-active enzyme (CAZyme) families, including 100 genes coding for glycosyl hydrolases (GHs) putatively involved in cellulose and hemicellulose degradation. Moreover, 31% of these CAZymes were expressed on cellulose and 29% on wheat straw. Proteomic analyses also revealed a complex and complete set of enzymes for deconstruction of cellulose (at least 22 proteins, including 4 endocellulases, 2 exocellulases, 2 cellobiohydrolases and 2 -glucosidases) and hemicellulose (at least 28 proteins, including 5 endoxylanases, 1 -xylosidase, 2 xyloglucanases, 2 endomannanases, 2 licheninases and 1 endo--1,3(4)-glucanase). Most of these proteins were secreted extracellularly and had numerous carbohydrate-binding domains (CBMs). In addition, O199 also secreted a high number of substrate-binding proteins (SBPs), including at least 42 proteins binding carbohydrates. Interestingly, both plant lignocellulose and crystalline cellulose triggered the production of a wide array of hydrolytic proteins, including cellulases, hemicellulases and other GHs. Our data provide an in-depth analysis of the complex and complete set of enzymes and accessory non-catalytic proteins—GHs, CBMs, transporters, and SBPs—implicated in the high cellulolytic capacity shown by this bacterial strain. The large diversity of hydrolytic enzymes and the extracellular secretion of most of them supports the use of Paenibacillus O199 as a candidate for second-generation technologies using paper or lignocellulosic agricultural wastes.
Project description:Sucrose is a major carbon source for industrial bioethanol production by Saccharomyces cerevisiae. In yeasts, two modes of sucrose metabolism occur: (i) extracellular hydrolysis by invertase, followed by uptake and metabolism of glucose and fructose, and (ii) uptake via sucrose-H+ symport followed by intracellular hydrolysis and metabolism. Although alternative start codons in the SUC2 gene enable synthesis of extracellular and intracellular invertase isoforms, sucrose hydrolysis in S. cerevisiae predominantly occurs extracellularly. In anaerobic cultures, intracellular hydrolysis theoretically enables a 9 % higher ethanol yield than extracellular hydrolysis, due to energy costs of sucrose-proton symport. This prediction was tested by engineering the promoter and 5’ coding sequences of SUC2, resulting in relocation of invertase to the cytosol. In anaerobic sucrose-limited chemostats, this iSUC2-strain showed an only 4% increased ethanol yield and high residual sucrose concentrations indicated suboptimal sucrose-transport kinetics. To improve sucrose-uptake affinity, it was subjected to 95 generations of anaerobic, sucrose-limited chemostat cultivation, resulting in a 20-fold decrease of residual sucrose concentrations and a 10-fold increase of the sucrose-transport capacity. A single-cell isolate showed an 11 % higher ethanol yield on sucrose in chemostat and batch cultures than an isogenic SUC2 reference strain, while transcriptome analysis revealed elevated expression of AGT1, encoding a disaccharide-proton symporter, and other maltose-related genes. Deletion of AGT1, which had been duplicated during laboratory evolution, restored the growth characteristics of the unevolved iSUC2 strain. This study demonstrates that engineering the topology of sucrose metabolism is an attractive strategy to improve ethanol yields in industrial processes. The goal of the present study was to investigate whether a relocation of sucrose hydrolysis to the cytosol can be used to improve ethanol yields on sucrose and which additional steps may be required to improve sucrose utilization by strains that only express intracellular invertase. To this end, the SUC2 gene was modified to cause an exclusive intracellular localization. Growth and product formation by the engineered strain were compared with that of the parental strain in anaerobic sucrose-limited chemostat cultures. Subsequently, evolutionary engineering was used to improve sucrose uptake kinetics and an evolved strain was characterized for growth and product formation in chemostat cultures. Transcriptome analysis and gene deletion studies were used to identify genetic changes in the evolved strain that contribute to its improved sucrose-uptake kinetics.
Project description:We created a mutator protein. The mutator, was prepared by fusing a PmCDA1 (Petromyzon marinus Cytidine DeAminase) and E.coli RNA polymerase alpha subunit(EcoRNAP alpha). After 120 cycles, whole genome sequencing was performed on the wild type and evolved sample. After characterization of the mutation capacity of our mutator, we evolved a sucrose utilization strain and we sequenced Suc strain.