Project description:BackgroundWoody plants, especially trees, usually must face several injuries caused by different agents during their lives. Healing of injuries in stem and branches, affecting the vascular cambium and xylem can take several years. In conifers, healing takes place mainly from the remaining vascular cambium in the margin of the wound. The woundwood formed in conifers during healing usually presents malformed and disordered tracheids as well as abundant traumatic resin ducts. These characteristics affect its functionality as water conductor and its technological properties.ResultsIn this work we analyze for the first time the transcriptomic basis of the formation of traumatic wood in conifers, and reveal some differences with normal early- and late-wood. Microarray analysis of the differentiating traumatic wood, confirmed by quantitative RT-PCR, has revealed alterations in the transcription profile of up to 1408 genes during the first period of healing. We have grouped these genes in twelve clusters, according to their transcription profiles, and have distinguished accordingly two main phases during this first healing.ConclusionsWounding induces a complete rearrangement of the transcriptional program in the cambial zone close to the injuries. At the first instance, radial growth is stopped, and a complete set of defensive genes, mostly related to biotic stress, are induced. Later on, cambial activity is restored in the lateral borders of the wound, even at a high rate. During this second stage certain genes related to early-wood formation, including genes involved in cell wall formation and transcription factors, are significantly overexpressed, while certain late-wood related genes are repressed. Additionally, significant alterations in the transcription profile of abundant non annotated genes are reported.
Project description:Wood in conifers is mainly composed of tracheids. Some taxa, such as Pinus, present tracheids also in the rays, but are axial tracheids which constitute the vast majority of secondary xylem. Nevertheless, radial and axial parenchyma surrounding constitutive and traumatic resin ducts is known to serve as crucial reserve storage. These reserves are mobilized in response to traumatism, insect and pathogen attacks and defoliation, allowing the synthesis of resin, healing and, in few taxa, even resprouting. However, due to the low proportion of parenchymatic cells in secondary xylem relevant genes involved in their differentiation may have been missed in studies of transcriptomics of conifer wood formation. In this study we have used Pinus canariensis as a model species, given its comparatively high proportion of axial parenchyma. We have prepared two normalized libraries from its cambial zone, covering early- and late-wood differentiation. We have de novo assembled a transcriptome, and have analyzed the transcriptional profiles during the growing season, getting a more complete picture of wood formation in conifers. SUBMITTER_CITATION: Chano, V., López de Heredia, U., Collada, C., et al. (2017). Transcriptomic analysis of juvenile wood formation during the growing season in Pinus canariensis. Holzforschung, 0(0), pp. -. Retrieved 8 Aug. 2017, from doi:10.1515/hf-2017-0014
Project description:BACKGROUND AND AIMS:It is widely accepted that hydraulic failure due to xylem embolism is a key factor contributing to drought-induced mortality in trees. In the present study, an attempt is made to disentangle phenotypic plasticity from genetic variation in hydraulic traits across the entire distribution area of a tree species to detect adaptation to local environments. METHODS:A series of traits related to hydraulics (vulnerability to cavitation and hydraulic conductivity in branches), growth performance and leaf mass per area were assessed in eight Pinus canariensis populations growing in two common gardens under contrasting environments. In addition, the neutral genetic variability (FST) and the genetic differentiation of phenotypic variation (QST) were compared in order to identify the evolutionary forces acting on these traits. KEY RESULTS:The variability for hydraulic traits was largely due to phenotypic plasticity. Nevertheless, the vulnerability to cavitation displayed a significant genetic variability (approx. 5 % of the explained variation), and a significant genetic × environment interaction (between 5 and 19 % of the explained variation). The strong correlation between vulnerability to cavitation and survival in the xeric common garden (r = -0·81; P < 0·05) suggests a role for the former in the adaptation to xeric environments. Populations from drier sites and higher temperature seasonality were less vulnerable to cavitation than those growing at mesic sites. No trade-off between xylem safety and efficiency was detected. QST of parameters of the vulnerability curve (0·365 for P50 and the slope of the vulnerability curve and 0·452 for P88) differed substantially from FST (0·091), indicating divergent selection. In contrast, genetic drift alone was found to be sufficient to explain patterns of differentiation for xylem efficiency and growth. CONCLUSIONS:The ability of P. canariensis to inhabit a wide range of ecosystems seemed to be associated with high phenotypic plasticity and some degree of local adaptations of xylem and leaf traits. Resistance to cavitation conferred adaptive potential for this species to adapt successfully to xeric conditions.
Project description:The shoot apical meristem is responsible of seasonal length increase in plants. In woody plants transition from primary to secondary growth is also produced during seasonal apical growth. These processes are controlled by different families of transcription factors. Using a previously constructed Pinus canariensis transcriptome, we designed a genomic microarray to measure the levels of transcription during apical growth. The identification of differentially expressed genes was performed by mean of a time-course analysis.
Project description:Water availability has been considered one of the crucial drivers of species distribution. However, the increasing of temperatures and more frequent water shortages could overcome the ability of long-lived species to cope with rapidly changing conditions. Growth and survival of natural populations adapted to a given site, transferred and tested in other environments as part of provenance trials, can be interpreted as a simulation of ambient changes at the original location. We compare the intraspecific variation and the relative contribution of plasticity to adaptation of key functional traits related to drought resistance: vulnerability to cavitation, efficiency of the xylem to conduct water and biomass allocation. We use six populations of Canary Island pine growing in three provenance trials (wet, dry, and xeric). We found that the variability for hydraulic traits was largely due to phenotypic plasticity, whereas, genetic variation was limited and almost restricted to hydraulic safety traits and survival. Trees responded to an increase in climate dryness by lowering growth, and increasing leaf-specific hydraulic conductivity by means of increasing the Huber value. Vulnerability to cavitation only showed a plastic response in the driest provenance trial located in the ecological limit of the species. This trait was more tightly correlated with annual precipitation, drought length, and temperature oscillation at the origin of the populations than hydraulic efficiency or the Huber value. Vulnerability to cavitation was directly related to survival in the dry and the xeric provenance trials, illustrating its importance in determining drought resistance. In a new climatic scenario where more frequent and intense droughts are predicted, the magnitude of extreme events together with the fact that plasticity of cavitation resistance is only shown in the very dry limit of the species could hamper the capacity to adapt and buffer against environmental changes of some populations growing in dry locations.
Project description:Horizontal gene transfer (HGT) is viewed as very common in the plant mitochondrial (mt) genome, but, to date, only one case of HGT has been found in gymnosperms. Here we report a new case of HGT, in which a mt nad5-1 fragment was transferred from an angiosperm to Pinus canariensis. Quantitative assay and sequence analyses showed that the foreign nad5-1 is located in the mt genome of P. canariensis and is nonfunctional. An extensive survey in the genus Pinus revealed that the angiosperm-derived nad5-1 is restricted to P. canariensis and present across the species' range. Molecular dating based on chloroplast DNA suggested that the HGT event occurred in the late Miocene after P. canariensis split from its closest relatives, and that the foreign copy became fixed in P. canariensis owing to drift during its colonization of the Canary Islands. The mechanism of this HGT is unclear but it was probably achieved through either direct cell-cell contact or external vectors. Our discovery provides evidence for an important role of HGT in plant mt genome evolution.