Project description:Microarray hybridization of cDNA libraries obtained from exponentially growing or heat-shocked AW1.7 or GGG10 cultures was performed to compare gene expression of these two strains. Expression of selected genes from different functional groups was quantified by quantitative PCR (q-PCR). DnaK, 30S and 50S risobomal subunits were overexpressed in E. coli GGG10 relative to E. coli AW1.7 upon heat shock at 50°C, indicating improved ribosome stability. The outer membrane porin NmpC and several transport proteins were overexpressed in exponentially growing E. coli AW1.7.
Project description:The heat shock response is critical for organisms to survive at a high temperature. Heterologous expression of eukaryotic molecular chaperons protects Escherichia coli against heat stress. Here we report that expression of the plant E3 ligase BnTR1 significantly increase the thermotolerance of Escherichia coli. Different from eukaryotic chaperones, BnTR1 post-transcriptionally regulates the heat shock factor σ32 though zinc fingers of the RING domain, which interacts with DnaK resulting in stabilizing σ32 and subsequently up-regulating heat shock proteins. Our findings indicate the expression of BnTR1 confers thermoprotective effects on E. coli cells, and it may provide useful clues to engineer thermophilic bacterial strains.
Project description:Expression profiles of wild-type and SgrR mutant E. coli strains under aMG and 2-DG-induced stress. Expression profiles of E. coli overexpressing SgrS sRNA.
Project description:Microarray hybridization of cDNA libraries obtained from exponentially growing or heat-shocked AW1.7 or GGG10 cultures was performed to compare gene expression of these two strains. Expression of selected genes from different functional groups was quantified by quantitative PCR (q-PCR). DnaK, 30S and 50S risobomal subunits were overexpressed in E. coli GGG10 relative to E. coli AW1.7 upon heat shock at 50M-BM-0C, indicating improved ribosome stability. The outer membrane porin NmpC and several transport proteins were overexpressed in exponentially growing E. coli AW1.7. Gene expression of a heat resistant strain, E. coli AW1.7, was compared to gene expression in a heat sensitive strain, E coli GGG10. RNA was isolated from late exponential cultures, or from late exponential cells heat-shocked by exposure to 50M-BM-0C for 15 min. Three independent biological repeats were analyzed, and technical repeats (dye-swap) were performed for two of three biological repeats.
Project description:To get a high resolution understanding of the effect of Fur on global gene expression, we compared by high-resolution RNAseq the transcriptomes of a wild-type E. coli K-12 strain and its Fur deletion derivative grown in minimal medium with or without supplementation of iron. Three independent total RNA extraction and RNAseq assays were performed for each strain in each condition.
Project description:The goal of this study is to compare gene expression data for a well known model organism (Escherichia coli) using different technologies (NGS here, microarray from GSE48776). mRNA profiles of Wild Type and two Mutant Strains (ydcR (b1439) MUTANT and yjiR (b4340) MUTANT), growth in minimal medium, were generated by deep sequencing, in triplicate, using Illumina MiSeq.
Project description:Escherichia coli exhibits diauxic growth in sugar mixtures due to CRP-mediated catabolite repression and inducer exclusion related to phosphotransferase system enzyme activity. Replacement of the native crp gene with a catabolite repression mutant (referred to as crp*) alleviates diauxic effects in E. coli and enables co-utilization of glucose and other sugars. While previous studies have examined the effects of expressing CRP* mutants on the expression of specific catabolic genes, little is known about the global transcriptional effects of CRP* expression. In this study, we compare the transcriptome of E. coli W3110 (expressing wild-type CRP) to that of mutant strain PC05 (expressing CRP*) in the presence and absence of glucose.