Project description:The retinal ganglion cell (RGC) competence factor ATOH7 is dynamically expressed during retinal histogenesis. ATOH7 transcription is controlled by a promoter-adjacent primary enhancer and a remote shadow enhancer (SE). Deletion of the ATOH7 human SE causes non‑syndromic congenital retinal non-attachment (NCRNA) disease, characterized by optic nerve aplasia and total blindness. We used genome editing to model NCRNA in mice. Deletion of the murine SE reduces Atoh7 mRNA >5-fold, but does not recapitulate optic nerve loss; however, SEdel/KO (knockout) trans heterozygotes have thin optic nerves. By analyzing Atoh7 mRNA and protein levels, RGC development and survival, and chromatin landscape effects, we show how the SE ensures robust Atoh7 transcriptional output. Combining SE deletion, KO and wild-type alleles in a genotypic series, we determined the amount of Atoh7 needed to produce a normal complement of adult RGCs, and the secondary consequences of graded reductions in Atoh7 dosage. Together these data reveal the workings of an evolutionary fail-safe, a duplicate enhancer mechanism hard-wired in the machinery of vertebrate retinal ganglion cell genesis.
Project description:During retinogenesis, the proneural bHLH transcription factor Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with nonsyndromic congenital retinal nonattachment (NCRNA) disorder, characterized by optic nerve atrophy and complete blindness. Here we functionally interrogate the significance of the Atoh7 enhancer landscape to retinogenesis. We demonstrate that deletion of the enhancer structure upstream of Atoh7 in mice leads to RGC deficiency, optic nerve hypoplasia and blood vascular abnormalities, phenocopying inactivation of Atoh7 and recapitulating key features of NCRNA. We further provide evidence that the loss of the Atoh7 remote enhancer impacts ipsilaterally-projecting RGCs and disrupts proper axonal projections to the brain targets. Transcriptionally, deletion of the Atoh7 remote enhancer is associated with dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3 which is normally epigenetically silenced in the developing retina. Our data provide novel insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and uncover a key role of Atoh7 in the transcriptional control of axon guidance molecules possibly via epigenetic mechanisms.
Project description:During retinogenesis, the proneural bHLH transcription factor Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with nonsyndromic congenital retinal nonattachment (NCRNA) disorder, characterized by optic nerve atrophy and complete blindness. Here we functionally interrogate the significance of the Atoh7 enhancer landscape to retinogenesis. We demonstrate that deletion of the enhancer structure upstream of Atoh7 in mice leads to RGC deficiency, optic nerve hypoplasia and blood vascular abnormalities, phenocopying inactivation of Atoh7 and recapitulating key features of NCRNA. We further provide evidence that the loss of the Atoh7 remote enhancer impacts ipsilaterally-projecting RGCs and disrupts proper axonal projections to the brain targets. Transcriptionally, deletion of the Atoh7 remote enhancer is associated with dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3 which is normally epigenetically silenced in the developing retina. Our data provide novel insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and uncover a key role of Atoh7 in the transcriptional control of axon guidance molecules possibly via epigenetic mechanisms.
Project description:During retinogenesis, the proneural bHLH transcription factor Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with nonsyndromic congenital retinal nonattachment (NCRNA) disorder, characterized by optic nerve atrophy and complete blindness. Here we functionally interrogate the significance of the Atoh7 enhancer landscape to retinogenesis. We demonstrate that deletion of the enhancer structure upstream of Atoh7 in mice leads to RGC deficiency, optic nerve hypoplasia and blood vascular abnormalities, phenocopying inactivation of Atoh7 and recapitulating key features of NCRNA. We further provide evidence that the loss of the Atoh7 remote enhancer impacts ipsilaterally-projecting RGCs and disrupts proper axonal projections to the brain targets. Transcriptionally, deletion of the Atoh7 remote enhancer is associated with dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3 which is normally epigenetically silenced in the developing retina. Our data provide novel insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and uncover a key role of Atoh7 in the transcriptional control of axon guidance molecules possibly via epigenetic mechanisms.
Project description:In mammals, retinal damage is followed by Müller glia cell activation and proliferation. While retinal gliosis persists in adult mammals after an insult or disease, some vertebrates, including zebrafish, have the capacity to regenerate. We believe we are the first group to show that gliosis is a fibrotic-like process in mammals’ eyes caused by differential activation of canonical and non-canonical TGFβ signaling pathways.
Project description:We collected whole genome testis expression data from hybrid zone mice. We integrated GWAS mapping of testis expression traits and low testis weight to gain insight into the genetic basis of hybrid male sterility.
Project description:Introgressed variants from other species can be an important source of genetic variation because they may arise rapidly, can include multiple mutations on a single haplotype, and have often been pretested by selection in the species of origin. Although introgressed alleles are generally deleterious, several studies have reported introgression as the source of adaptive alleles-including the rodenticide-resistant variant of Vkorc1 that introgressed from Mus spretus into European populations of Mus musculus domesticus. Here, we conducted bidirectional genome scans to characterize introgressed regions into one wild population of M. spretus from Spain and three wild populations of M. m. domesticus from France, Germany, and Iran. Despite the fact that these species show considerable intrinsic postzygotic reproductive isolation, introgression was observed in all individuals, including in the M. musculus reference genome (GRCm38). Mus spretus individuals had a greater proportion of introgression compared with M. m. domesticus, and within M. m. domesticus, the proportion of introgression decreased with geographic distance from the area of sympatry. Introgression was observed on all autosomes for both species, but not on the X-chromosome in M. m. domesticus, consistent with known X-linked hybrid sterility and inviability genes that have been mapped to the M. spretus X-chromosome. Tract lengths were generally short with a few outliers of up to 2.7 Mb. Interestingly, the longest introgressed tracts were in olfactory receptor regions, and introgressed tracts were significantly enriched for olfactory receptor genes in both species, suggesting that introgression may be a source of functional novelty even between species with high barriers to gene flow.
Project description:During retinogenesis, the proneural bHLH transcription factor Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with nonsyndromic congenital retinal nonattachment (NCRNA) disorder, characterized by optic nerve atrophy and complete blindness. Here we functionally interrogate the significance of the Atoh7 enhancer landscape to retinogenesis. We demonstrate that deletion of the enhancer structure upstream of Atoh7 in mice leads to RGC deficiency, optic nerve hypoplasia and blood vascular abnormalities, phenocopying inactivation of Atoh7 and recapitulating key features of NCRNA. We further provide evidence that the loss of the Atoh7 remote enhancer impacts ipsilaterally-projecting RGCs and disrupts proper axonal projections to the brain targets. Transcriptionally, deletion of the Atoh7 remote enhancer is associated with dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3 which is normally epigenetically silenced in the developing retina. Our data provide novel insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and uncover a key role of Atoh7 in the transcriptional control of axon guidance molecules possibly via epigenetic mechanisms.
Project description:During retinogenesis, the proneural bHLH transcription factor Atoh7 is transiently expressed in retinal progenitor cells (RPCs) and is required for retinal ganglion cell (RGC) differentiation. In humans, a deletion in a distal non-coding regulatory region upstream of ATOH7 is associated with nonsyndromic congenital retinal nonattachment (NCRNA) disorder, characterized by optic nerve atrophy and complete blindness. Here we functionally interrogate the significance of the Atoh7 enhancer landscape to retinogenesis. We demonstrate that deletion of the enhancer structure upstream of Atoh7 in mice leads to RGC deficiency, optic nerve hypoplasia and blood vascular abnormalities, phenocopying inactivation of Atoh7 and recapitulating key features of NCRNA. We further provide evidence that the loss of the Atoh7 remote enhancer impacts ipsilaterally-projecting RGCs and disrupts proper axonal projections to the brain targets. Transcriptionally, deletion of the Atoh7 remote enhancer is associated with dysregulation of axonogenesis genes, including the derepression of the axon repulsive cue Robo3 which is normally epigenetically silenced in the developing retina. Our data provide novel insights into how Atoh7 enhancer elements function to promote RGC development and optic nerve formation and uncover a key role of Atoh7 in the transcriptional control of axon guidance molecules possibly via epigenetic mechanisms.