Project description:The aim of this work was to characterize proteome of aqueous humor from subjects with various eye conditions such as cataract, glaucoma and pseudoexfoliation syndrome by high-resolution chromate-mass-spectrometry. Twenty nine human aqueous humor samples were processed by shotgun proteomics. Data was searched using MaxQuant package. Totally, 263 protein groups were identified. Label-free quantitation reported some differentially expressed proteins in aqueous humor proteome for the aforementioned eye diseases.
Project description:Purpose: To characterize microRNAs (miRNAs) and their possible roles in high myopia by using next generation sequencing Methods: Aqueous humor samples were obtained from 15 highly myopic eyes and 15 cataract eyes at the onset of surgery. miRNA next generation sequencing and bioinformatics analyses were performed using RNA extracted from aqueous humor samples. Results: A total of 341 miRNAs were detected in the aqueous humor samples of highly myopic eyes; 201 miRNAs were detected in the aqueous humor samples of cataractous control eyes. A total of 249 mature miRNAs and 17 novel miRNAs were differentially expressed during myopia. Possible pathways regulated by these aberrantly expressed miRNAs included the TNF, MAPK, PI3K-Akt, and HIF-1 signaling pathways. Conclusions: The current study provided an overall view of miRNA profiling in the aqueous humor of highly myopic eyes. These profiles may be associated with myopia pathogenesis, and are potential biomarkers.
Project description:The aim of this work was to characterize proteome of aqueous humor from subjects with various eye conditions such as cataract, glaucoma and pseudoexfoliation syndrome by high-resolution chromate-mass-spectrometry. Twenty nine human aqueous humor samples were processed by shotgun proteomics. Data was searched using MaxQuant package. Totally, 263 protein groups were identified. Label-free quantitation reported some differentially expressed proteins in aqueous humor proteome for the aforementioned eye diseases.
Project description:Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated contractile activity, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active RhoA (RhoAV14). Organ cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 revealed strong contractile cell morphology, increased actin stress fibers and focal adhesions, along with increased levels of phosphorylated myosin II, and collagen IV, fibronectin and laminin. cDNA microarray analysis of RNA extracted from RhoAV14 expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of myosin II, paxillin and focal adhesion kinase, and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the contractile force, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. Keywords: Gene Expression Two condition experiment: Human trabecular mesh work cells infected with Adenivirus expressing GFP Vs Adenovirus expressing GFP and constitutively active RhoAV14
Project description:TGF-beta levels are known to increase in the aqueous humor of eye cells in patients with glaucoma. Increase TGF-beta is assumed to have a biochemical impact on the trabecular meshwork, and an increase in extracellular matrix formation, which may be responsible for decrease outflow facility of the eye. This may increase extracellular pressure, causing glaucoma. TGF-beta 1 may be the cause of abnormal accumulation of extracellular matrices in trabecular meshwork of eyes with primary open angle glaucoma. Transforming growth factor (TGF)-beta2 regulates the expression of proteoglycans in aqueous humor from human glaucomatous eyes. To identify gene expression changes as a result of TGF-beta1 and 2 treatment of human trabecular meshwork cells. We expect to see a change in expression of the proteoglycans in HTM cells as a response to TGF-beta treatment. Human Trabecular Meswork cells in the eye were bathed by aqueous humor. TM cells were removed from individuals with the following ages: 16,66,67,73, and 76. Each individual was treated with EtOH (control), TGF-beta1, or TGF-beta2. Total RNA from each individual was pooled for each chip. Technical replicates were created for each treatment type, for a total of 6 chips.
Project description:To investigate the roles of microRNAs in the aqueous humor of patients with typical age-related macular degeneration and polypoidal choroidal vasculopathy using next-generation sequencing.
Project description:The purpose of this study is to discover genes that might increase aqueous humor outflow when human ciliary muscle or human trabecular meshwork cells are treated with the prostaglandin analogues latanoprost free acid or prostaglandin F2alpha. Five tissue donors were pooled on each chip.
Project description:Impaired drainage of aqueous humor through the trabecular meshwork (TM) culminating in increased intraocular pressure is a major risk factor for glaucoma, a leading cause of blindness worldwide. Regulation of aqueous humor drainage through the TM, however, is poorly understood. The role of RhoA GTPase-mediated contractile activity, cell adhesive interactions, and gene expression in regulation of aqueous humor outflow was investigated using adenoviral vector-driven expression of constitutively active RhoA (RhoAV14). Organ cultured anterior segments from porcine eyes expressing RhoAV14 exhibited significant reduction of aqueous humor outflow. Cultured TM cells expressing RhoAV14 revealed strong contractile cell morphology, increased actin stress fibers and focal adhesions, along with increased levels of phosphorylated myosin II, and collagen IV, fibronectin and laminin. cDNA microarray analysis of RNA extracted from RhoAV14 expressing human TM cells revealed a significant increase in the expression of genes encoding extracellular matrix (ECM) proteins, cytokines, integrins, cytoskeletal proteins and signaling proteins. Conversely, various ECM proteins stimulated robust increases in phosphorylation of myosin II, paxillin and focal adhesion kinase, and activated Rho GTPase and actin stress fiber formation in TM cells, indicating a potential regulatory feedback interaction between ECM-induced mechanical strain and Rho GTPase-induced isometric tension in TM cells. Collectively, these data demonstrate that sustained activation of Rho GTPase signaling in the aqueous humor outflow pathway increases resistance to aqueous humor outflow through the trabecular pathway by influencing the contractile force, cell adhesive interactions, and the expression of ECM proteins and cytokines in TM cells. Keywords: Gene Expression
Project description:S. aureus SA564 and SA564-codY-mutant were grown in bovine aqueous humor, bovine vitreous humor and a chemically defined medium. Samples were extracted in midlog phase and affymetrix microarray processing was performed.