Project description:Rhizocticins are phosphono-oligopeptide antibiotics that contain a toxic C-terminal ( Z) -l -2-amino-5-phosphono-3-pentenoic acid (APPA) moiety. APPA is an irreversible inhibitor of threonine synthase (ThrC), a pyridoxal 5'-phosphate (PLP)-dependent enzyme that catalyzes the conversion of O-phospho-l-homoserine to l-threonine. ThrCs are essential for the viability of bacteria, plants, and fungi and are a target for antibiotic development, as de novo threonine biosynthetic pathway is not found in humans. Given the ability of APPA to interfere in threonine metabolism, it is unclear how the producing strain B. subtilis ATCC 6633 circumvents APPA toxicity. Notably, in addition to the housekeeping APPA-sensitive ThrC ( BsThrC), B. subtilis encodes a second threonine synthase (RhiB) encoded within the rhizocticin biosynthetic gene cluster. Kinetic and spectroscopic analyses show that PLP-dependent RhiB is an authentic threonine synthase, converting O-phospho-l-homoserine to threonine with a catalytic efficiency comparable to BsThrC. To understand the structural basis of inhibition, we determined the crystal structure of APPA bound to the housekeeping BsThrC, revealing a covalent complex between the inhibitor and PLP. Structure-based sequence analyses reveal structural determinants within the RhiB active site that contribute to rendering this ThrC homologue resistant to APPA. Together, this work establishes the self-resistance mechanism utilized by B. subtilis ATCC 6633 against APPA exemplifying one of many ways by which bacteria can overcome phosphonate toxicity.
Project description:Bacillus subtilis ATCC (American type culture collection) 6633 was found to biotransform ganoderic acid A (GAA), which is a major lanostane triterpenoid from the medicinal fungus Ganoderma lucidum. Five glycosyltransferase family 1 (GT1) genes of this bacterium, including two uridine diphosphate-dependent glycosyltransferase (UGT) genes, BsUGT398 and BsUGT489, were cloned and overexpressed in Escherichia coli. Ultra-performance liquid chromatography confirmed the two purified UGT proteins biotransform ganoderic acid A into a metabolite, while the other three purified GT1 proteins cannot biotransform GAA. The optimal enzyme activities of BsUGT398 and BsUGT489 were at pH 8.0 with 10 mM of magnesium or calcium ion. In addition, no candidates showed biotransformation activity toward antcin K, which is a major ergostane triterpenoid from the fruiting bodies of Antrodia cinnamomea. One biotransformed metabolite from each BsUGT enzyme was then isolated with preparative high-performance liquid chromatography. The isolated metabolite from each BsUGT was identified as ganoderic acid A-15-O-β-glucoside by mass and nuclear magnetic resonance spectroscopy. The two BsUGTs in the present study are the first identified enzymes that catalyze the 15-O-glycosylation of triterpenoids.
Project description:Subtilin is a ribosomally synthesized peptide antibiotic produced by Bacillus subtilis ATCC 6633. Recently, we reported regarding genes spaB, spaT, and spaC (C. Klein, C. Kaletta, N. Schnell, and K.-D. Entian, Appl. Environ. Microbiol. 58:132-142, 1992) which are involved in the biosynthesis of subtilin, and genes spaR and spaK (C. Klein, C. Kaletta, and K.-D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), which regulate subtilin biosynthesis via a histidine kinase/response regulator system. Further sequence analysis revealed the presence of three additional open reading frames, spaI, spaF, and spaG, downstream of the structural gene spaS. The spaI gene encodes a hydrophilic 19.3-kDa lipoprotein containing a consensus signal sequence, indicating that this protein might be membrane anchored. A similar gene, nisI, has been identified in the nisin producer. SpaF shows strong homology to members of the family of ABC transporters. spaG encodes a hydrophobic protein which might form the active transporter together with SpaF. Gene disruption mutants in all three genes were still able to produce subtilin; however, these mutants were more sensitive to subtilin than the wild-type strain. These results show that these genes are involved in the immunity mechanism of the producer strain. A similar involvement of an ABC transporter in the self-protection mechanism has been described for the McbE and McbF transporter, which confers immunity against microcin B17 in Escherichia coli. Mutants containing mutations in the genes spaR and spaK, which are responsible for regulation of subtilin biosynthesis, also became more sensitive to subtilin.(ABSTRACT TRUNCATED AT 250 WORDS)
Project description:Here, we report the draft genome sequences of the type strains of three cellulolytic or hemicellulolytic alkaliphilic Bacillus species: Bacillus wakoensis, Bacillus akibai, and Bacillus hemicellulosilyticus. The genome information for these three strains will be useful for studies of alkaliphilic Bacillus species, their evolution, and biotechnological applications for their enzymes.
Project description:Bacillus subtilis is an aerobic spore-forming Gram-positive bacterium that is a model organism and of great industrial significance as the source of diverse novel functional molecules. Here we present, to our knowledge, the first genome sequence of Bacillus subtilis strain gtP20b isolated from the marine environment. A subset of candidate genes and gene clusters were identified, which are potentially involved in production of diverse functional molecules, like novel ribosomal and nonribosomal antimicrobial peptides. The genome sequence described in this paper is due to its high strain specificity of great importance for basic as well as applied researches on marine organisms.