Project description:The purpose of this study is to determine whether the presence of pathogenic Escherichia coli in colon is associated with psychiatric disorders.
Project description:Red fruits are valued for their vitamin C and polyphenol content, but traditional heat preservation methods used in juice and nectar production can significantly reduce these components. Therefore, alternative non-thermal methods are explored to inactivate foodborne pathogens like Escherichia coli while maintaining the nutritional value. However, knowledge about the effects of these technologies on bacterial cells is limited. This study analyzed differentially expressed genes of E. coli ATCC 8739 inoculated in strawberry nectar after exposure to three treatments with two sets of parameters each, namely thermal treatment, high-pressure processing (HPP), and moderate-intensity pulsed electric field (MIPEF). The highest inactivation efficiency was achieved with HPP at 400 MPa, 1 min, reducing microbial counts by 5.0±0.3 log cfu/mL, and thermal treatment at 60°C, 200 s, achieving a reduction of 4.4±0.2 log cfu/mL, while no inactivation was observed with MIPEF at 6 kV/cm. Transcriptomic analysis showed that thermal and HPP treatments caused similar molecular stress responses in E. coli. In both cases, the most overexpressed genes encoded outer membrane proteins, which may lead to the activation of the envelope stress response. Despite no microbial inactivation was revealed after MIPEF treatment, strong transcriptomic responses were observed, particularly in genes related to membrane integrity and metabolic activity. Numerous overexpressed genes associated with ABC transporters, outer membrane proteins, and lipoproteins were identified, which could increase the strain’s virulence. This study provides insights into the stress response mechanisms induced by conventional and novel treatments. Nevertheless, further research is needed to investigate the long-term effects on bacterial populations.
Project description:Background: This study aimed to explore potential tobramycin-resistant mutagenesis of Escherichia coli (E. coli) strains after spaceflight. Methods: A spaceflight-induced mutagenesis of multi-drug resistant E.coli strain (T1_13) on the outer space for 64 days (ST5), and a ground laboratory with the same conditions (GT5) were conducted. Both whole-genome sequencing and RNA-sequencing were performed. Results: A total of 75 SNPs and 20 InDels were found to be associated with the resistance mechanism. Compared to T1_13, 1242 genes were differentially expressed in more than 20 of 38 tobramycin-resistant E. coli isolates while not in GT5. Function annotation of these SNPs/InDels related genes and differentially expressed genes was performed. Conclusion: This study provided clues for potential tobramycin-resistant spaceflight-induced mutagenesis of E. coli.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain MS14387.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain MS14384.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strain B36.
Project description:The Antibiotic Resistant Sepsis Pathogens Framework Initiative aims to develop a framework dataset of 5 sepsis pathogens (5 strains each) using an integrated application of genomic, transcriptomic, metabolomic and proteomic technologies. The pathogens included in this initiative are: Escherichia coli, Klebsiella pneumoniae complex, Staphylococcus aureus, Streptococcus pyogenes, and Streptococcus pneumoniae. This submission pertains to strains MS14386.