Project description:Bioactive compounds, including some fatty acids (FAs), can induce beneficial effects on body fat-content and metabolism. In this work, we have used C. elegans as a model to examine the effects of several FAs on body fat accumulation. Both omega-3 and omega-6 fatty acids induced a reduction of fat content in C. elegans, with linoleic, gamma-linolenic and dihomo-gamma-linolenic acids being the most effective ones. These three FAs are sequential metabolites in PUFA synthesis pathway and the effects seem to be primarily due to dihomo-gamma-linolenic acid, being independent of transformation into omega-3 or arachidonic acid. Gene expression analyses show that peroxisomal beta oxidation is the main mechanism involved in this fat-loss. All these results point out the importance of further analysis of the activity of these omega-6 FAs, due to their potential application in obesity and related diseases. In order to elucidate the mechanisms underlying the fat loss induced by the omega-6 FAs LNA, GLA and DGLA, we analyzed the whole-transcriptome expression profiling in response to LNA, GLA and DGLA treatments in wild-type worms using Affymetrix C. elegans expression arrays.
Project description:Comparison of gene expression profiles from C. elegans treated with L4440, B0395.3 and H28O16.1. The RNA-seq data comprise three groups. Jena Centre for Systems Biology of Ageing - JenAge (www.jenage.de)
Project description:Comprehensive list of SUMO targets from the nematode Caenorhabditis elegans. SUMO conjugates isolated from transgenic worms carrying 8His and GFP tagged SUMO. The constructs rescues the lethal knock-out of a single SUMO gene, smo-1. SUMO conjugates where isolated from heat shock, arsenite exposure, and UV treated SUMO-GFP worms as well as from control non treated animals. In parallel identical purification procedure was performed with non-transgenic worms and proteins identified with this control where excluded.