Project description:Physiological changes in trunk wood of Vitis vinifera L. cv. Chardonnay in response to esca proper and apoplexy revealed by proteomic and transcriptomic analyses
Project description:Transcriptional changes in field-grown plants of Vitis Vinifera cultivars 'Chardonnay' and 'Incrocio Manzoni' naturally infected with Bois Noir phytoplasma, compared to healthy samples. SUBMITTER_CITATION: Albertazzi G., Caffagni A., Milc J.A., Francia E., Roncaglia E., Ferrari F., Tagliafico E., Stefani E., Pecchioni N. (2009) Gene expression in grapevine cultivars in response to Bois Noir phytoplasma infection. Plant Science 176: 792-804. ****[PLEXdb(http://www.plexdb.org) has submitted this series at GEO on behalf of the original contributor, Nicola Pecchioni. The equivalent experiment is VV14 at PLEXdb.] Experiment Overall Design: genotype: Chardonnay - disease type: Bois Noir infected(3-replications); genotype: Chardonnay - disease type: Healthy(3-replications); genotype: Incrocio Manzoni - disease type: Bois Noir infected(2-replications); genotype: Incrocio Manzoni - disease type: Healthy(2-replications)
Project description:Study of gene expression during Plasmopara viticola infection in the resistant Vitis vinifera cultivar 'Regent'. The oomycete fungus Plasmopara viticola (Berk. et Curt.) Berl. et de Toni is responsible for grapevine downy mildew disease. Most of the cultivated grapevines are sensitive to this pathogen, thus requiring intensive fungicide treatments. The molecular basis of resistance to this pathogen is poorly understood. We have carried out a cDNA microarray transcriptome analysis to identify grapevine genes associated with resistance traits. Early transcriptional changes associated with downy mildew infection in the resistant Vitis vinifera cultivar ‘Regent’, when compared to the susceptible cultivar ‘Trincadeira’, were analyzed. Transcript levels were measured at three time-points: 0, 6 and 12 hours post inoculation (hpi). Our data indicate that resistance in V. vinifera ‘Regent’ is induced after infection. This study provides the identification of several candidate genes that may be related to ‘Regent’ defense mechanisms, allowing a better understanding of this cultivar's resistance traits.
Project description:We applied the RNA-Seq approach to reconstruct the transcriptome of Vitis vinifera cv. Corvina, using RNA pooled from a comprehensive set of sampled tissues in different organs and development steps, and we were able to reconstruct some novel and putative private Corvina genes. We analyzed the expression of these genes in three berry developmental conditions, and posit that they may play some role in the formation of the mature organ. Background: Plants display a high genetic and phenotypic variability among different cultivars. Understanding the genetic components that contribute to phenotypic diversity is necessary to disentangle genetic factors from the environment. Given the high degree of genetic diversity among plant cultivars a whole-genome sequencing and re-annotation of each variety is required but a reliable genome assembly is hindered by the high heterozigosity and sequence divergence. Results: we show the feasibility of an approach based on sequencing of cDNA by RNA-Seq to analyze varietal diversity between a local grape cultivar Corvina and the PN40024 grape reference genome. We detected 15,260 known genes and we annotated alternative splicing isoforms for 9,463 genes. Our approach allowed to define 2,321 protein coding putative novel genes in unannotated or unassembled regions of the reference genome PN40024 and 180 putative private Corvina genes whose sequence is not shared with the reference genome. Conclusions: With a de novo assembly based approach we were able to reconstruct a substantial part of the Corvina transcriptome and we improved substantially known genes annotations by better defining the structure of known genes, annotating splicing isoforms and detecting unannotated genes. Moreover our results clearly define sets of private genes which are likely part of the âdispensableâ genome and potentially involved into influencing some cultivar-specific characteristics. In plant biology a transcriptome de novo assembly approach should not be limited to species where no reference genome is available as it can improve the annotation lead to the identification of genes peculiar of a cultivar.