Project description:Innate immune sensing of influenza A virus (IAV) induces activation of various immune effector mechanisms including the NLRP3 inflammasome and programmed cell death pathways. Although type I IFNs are identified as key mediators of inflammatory and cell death responses during IAV infection, the involvement of various IFN-regulated effectors in facilitating these responses are less studied. Here, we demonstrate the role of interferon regulatory factor 1 (IRF1) in promoting NLRP3 inflammasome activation and cell death during IAV infection. IRF1 functions as a transcriptional regulator of Z-DNA binding protein 1 (ZBP1, also called as DLM1/DAI), a key molecule mediating IAV-induced inflammatory and cell death responses. Therefore, our study identified IRF1 as an upstream regulator of NLRP3 inflammasome and cell death during IAV infection and further highlights the complex and multilayered regulation of key molecules controlling inflammatory response and cell fate decisions during infections.
Project description:The innate immune system recognizes nucleic acids as a signature of microbial infection and initiates host-protective responses, including the production of type I IFN and proinflammatory cytokines. Z-DNA binding protein 1 (ZBP1, also known as DLM-1 or DAI) was previously identified as a dsDNA binding protein, triggering DNA-mediated activation of innate immune responses. However, mice or cells lacking ZBP1 produce normal levels of type I IFN in response to dsDNA. Therefore, the classification of ZBP1 as a true DNA sensor remains to be resolved. Here, we report that the single stranded RNA virus, influenza A virus (IAV) is a trigger of the cytosolic sensor ZBP1. Sensing of IAV infection by ZBP1 engages a novel NLRP3 inflammasome pathway that is not defined by the conventions of the canonical and non-canonical NLRP3 inflammasome pathways. Surprisingly, IAV-induced cell death was not prevented by the absence of the NLRP3 inflammasome. Instead, we identified parallel contributions from pyroptosis, necroptosis and apoptosis in the execution of ZBP1-dependent cell death, mediated by the kinase RIPK3. Overall, the ability of ZBP1 to sense IAV infection signifies a point of divergence for IAV-induced programmed cell death pathways and inflammasome activation. We used microarrays to explore the gene expression profiles differentially expressed in influenza-infected bone marrow derived macrophages (BMDM) isolated from Ifnar1-/- and wild-type mice.
Project description:The innate immune system recognizes nucleic acids as a signature of microbial infection and initiates host-protective responses, including the production of type I IFN and proinflammatory cytokines. Z-DNA binding protein 1 (ZBP1, also known as DLM-1 or DAI) was previously identified as a dsDNA binding protein, triggering DNA-mediated activation of innate immune responses. However, mice or cells lacking ZBP1 produce normal levels of type I IFN in response to dsDNA. Therefore, the classification of ZBP1 as a true DNA sensor remains to be resolved. Here, we report that the single stranded RNA virus, influenza A virus (IAV) is a trigger of the cytosolic sensor ZBP1. Sensing of IAV infection by ZBP1 engages a novel NLRP3 inflammasome pathway that is not defined by the conventions of the canonical and non-canonical NLRP3 inflammasome pathways. Surprisingly, IAV-induced cell death was not prevented by the absence of the NLRP3 inflammasome. Instead, we identified parallel contributions from pyroptosis, necroptosis and apoptosis in the execution of ZBP1-dependent cell death, mediated by the kinase RIPK3. Overall, the ability of ZBP1 to sense IAV infection signifies a point of divergence for IAV-induced programmed cell death pathways and inflammasome activation.
Project description:Inflammasome, activated by pathogen-derived and host-derived danger signals, constitutes a multimolecular signaling complex that serves as a platform for caspase-1 (CASP1) activation and interleukin-1beta (IL1B) maturation. The activation of NLRP3 inflammasome requires two-step signals. The first “priming” signal (Signal 1) enhances gene expression of inflammasome components. The second “activation” signal (Signal 2) promotes the assembly of inflammasome components. Deregulated activation of NLRP3 inflammasome contributes to the pathological processes of Alzheimer’s disease (AD) and multiple sclerosis (MS). However, at present, the precise mechanism regulating NLRP3 inflammasome activation and deactivation remains largely unknown. By genome-wide gene expression profiling, we studied the molecular network of NLRP3 inflammasome activation-responsive genes in a human monocyte cell line THP-1 sequentially given two-step signals. We identified the set of 83 NLRP3 inflammasome activation-responsive genes. Among them, we found the NR4A nuclear receptor family NR4A1, NR4A2, and NR4A3, the EGR family EGR1, EGR2, and EGR3, the IkappaB family NFKBIZ, NFKBID, and NFKBIA as a key group of the genes that possibly constitute a negative feedback loop for shutting down inflammation following NLRP3 inflammasome activation. By molecular network analysis, we identified a complex network of NLRP3 inflammasome activation-responsive genes involved in cellular development and death, and immune and inflammatory responses, where transcription factors AP-1, NR4A, and EGR serve as a hub. Thus, NLRP3 inflammasome activation-responsive genes constitute the molecular network composed of a set of negative feedback regulators for prompt resolution of inflammation. To load the Signal 1 (S1), THP-1 cells were incubated for 3 hours in the culture medium with or without inclusion of 0.2 microgram/ml lipopolysaccharide (LPS). To load the Signal 2 (S2), they were incubated further for 2 hours in the culture medium with inclusion of 10 microM nigericin sodium salt dissolved in ethanol or the equal v/v% concentration of ethanol (vehicle), followed by processing for microarray analysis on Human Gene 1.0 ST Array (Affymetrix).
Project description:Inflammasomes are multi-protein complexes that control the production of pro-inflammatory cytokines such as IL-1beta. Inflammasomes play an important role in the control of immunity to tumors and infections, and also in autoimmune diseases, but the mechanisms controlling the activation of human inflammasomes are largely unknown. We found that human activated CD4+CD45RO+ memory T-cells specifically suppress P2X7R-mediated NLRP3 inflammasome activation, without affecting P2X7R-independent NLRP3 or NLRP1 inflammasome activation. The concomitant increase in pro-IL-1β production induced by activated memory T-cells concealed this effect. Priming with IFNβ decreased pro-IL-1β production in addition to NLRP3 inflammasome inhibition and thus unmasked the inhibitory effect on NLRP3 inflammasome activation. IFNβ did not suppress NLRP3 inflammasome activation by acting directly on monocytes. The inhibition of pro-IL-1β production and suppression of NLRP3 inflammasome activation by IFNβ-primed human CD4+CD45RO+ memory T-cells is partly mediated by soluble FasL and is associated with down-regulated P2X7R mRNA expression and reduced response to ATP in monocytes. CD4+CD45RO+ memory T-cells from multiple sclerosis (MS) patients showed a reduced ability to suppress NLRP3 inflammasome activation, however their suppressive ability was recovered following in vivo treatment with IFNβ. Thus, our data demonstrate that human P2X7R-mediated NLRP3 inflammasome activation is regulated by activated CD4+CD45RO+ memory T cells, and provide new information on the mechanisms mediating the therapeutic effects of IFNβ in MS. Memory T-cells were cultured in the presence of monocytes with and without Interferon-beta, resorted and expression profile was determined
Project description:Inflammasome, activated by pathogen-derived and host-derived danger signals, constitutes a multimolecular signaling complex that serves as a platform for caspase-1 (CASP1) activation and interleukin-1beta (IL1B) maturation. The activation of NLRP3 inflammasome requires two-step signals. The first “priming” signal (Signal 1) enhances gene expression of inflammasome components. The second “activation” signal (Signal 2) promotes the assembly of inflammasome components. Deregulated activation of NLRP3 inflammasome contributes to the pathological processes of Alzheimer’s disease (AD) and multiple sclerosis (MS). However, at present, the precise mechanism regulating NLRP3 inflammasome activation and deactivation remains largely unknown. By genome-wide gene expression profiling, we studied the molecular network of NLRP3 inflammasome activation-responsive genes in a human monocyte cell line THP-1 sequentially given two-step signals. We identified the set of 83 NLRP3 inflammasome activation-responsive genes. Among them, we found the NR4A nuclear receptor family NR4A1, NR4A2, and NR4A3, the EGR family EGR1, EGR2, and EGR3, the IkappaB family NFKBIZ, NFKBID, and NFKBIA as a key group of the genes that possibly constitute a negative feedback loop for shutting down inflammation following NLRP3 inflammasome activation. By molecular network analysis, we identified a complex network of NLRP3 inflammasome activation-responsive genes involved in cellular development and death, and immune and inflammatory responses, where transcription factors AP-1, NR4A, and EGR serve as a hub. Thus, NLRP3 inflammasome activation-responsive genes constitute the molecular network composed of a set of negative feedback regulators for prompt resolution of inflammation.
Project description:Immune cells sense the microenvironment to fine-tune their inflammatory responses. Patients with cryopyrin associated periodic syndrome (CAPS), caused by mutations in the NLRP3 gene, present auto-inflammation and its manifestation is largely dependent on environmental cues. However, the underlying mechanisms are poorly understood. Here, we uncover that KCNN4, a calcium-activated potassium channel, links PIEZO-mediated mechanotransduction to NLRP3 inflammasome activation. Yoda1, a PIEZO1 agonist, lowers the threshold for NLRP3 inflammasome activation. PIEZO-mediated sensing of stiffness and shear stress increases NLRP3-dependent inflammation. Myeloid-specific deletion of PIEZO1/2 protects mice from gouty arthritis. Activation of PIEZO1 triggers calcium influx, which activates KCNN4 to evoke potassium efflux promoting NLRP3 inflammasome activation. Activation of PIEZO signaling is sufficient to activate the inflammasome in cells expressing CAPS-causing NLRP3 mutants via KCNN4. Finally, pharmacologic inhibition of KCNN4 alleviates auto-inflammation in CAPS patient cells and in CAPS-mimicking mice. Thus, PIEZO-dependent mechanical inputs augment inflammation in NLRP3-dependent diseases including CAPS.
Project description:Activating macrophage NLRP3 inflammasome can promote excessive inflammation, with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and IL-1beta secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves cristae ultrastructure, and attenuates mitochondrial ROS production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. We suggest that PDHK inhibition improves mitochondrial fitness by reversing NLRP3 inflammasome activation in acutely inflamed macrophages.
Project description:Activating macrophage NLRP3 inflammasome can promote excessive inflammation, with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and IL-1beta secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves cristae ultrastructure, and attenuates mitochondrial ROS production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. We suggest that PDHK inhibition improves mitochondrial fitness by reversing NLRP3 inflammasome activation in acutely inflamed macrophages.
Project description:Activating macrophage NLRP3 inflammasome can promote excessive inflammation, with severe cell and tissue damage and organ dysfunction. Here, we show that pharmacological or genetic inhibition of pyruvate dehydrogenase kinase (PDHK) significantly attenuates NLRP3 inflammasome activation in murine and human macrophages and septic mice by lowering caspase-1 cleavage and IL-1beta secretion. Inhibiting PDHK reverses NLRP3 inflammasome-induced metabolic reprogramming, enhances autophagy, promotes mitochondrial fusion over fission, preserves cristae ultrastructure, and attenuates mitochondrial ROS production. The suppressive effect of PDHK inhibition on the NLRP3 inflammasome is independent of its canonical role as a pyruvate dehydrogenase regulator. We suggest that PDHK inhibition improves mitochondrial fitness by reversing NLRP3 inflammasome activation in acutely inflamed macrophages.