Project description:Clostridium ljungdahlii not only utilizes CO, but also H2 as energy source during autotrophic growth. And C. ljungdahlii also grows in fructose fermentation. In theory, fructose is a more energetically favourable energy source than syngas in the fermentation of C. ljungdahlii. However, C. ljungdahlii grows insufficiently in fructose and produces less acetate and ethanol, compared to syngas fermentation. In this study, C. ljungdahlii wild type and mutants were fermented on fructose. C. ljungdahlii produced less ethanol than the ΔadhE1 mutant and consumed less fructose. The ΔadhE1+2 mutant cannot grow in the syngas fermentation and produced less ethanol among the three strains. The results showed that aldehyde dehydrogenase inactivation led to efficient metabolism in C. ljungdahlii and the bifunctional aldehyde/alcohol dehydrogenases inactivation led to decrease metabolism. Thus, comparative transcriptomes among cells grown on fructose of three strains were performed to investigate gene expression profiles based on three biological replicates.
Project description:Second fermentation in a bottle supposes such specific conditions that undergo yeasts to a set of stress situations like high ethanol, low nitrogen, low pH or sub-optimal temperature. Also, yeast have to grow until 1 or 2 generations and ferment all sugar available while they resist increasing CO2 pressure produced along with fermentation. Because of this, yeast for second fermentation must be selected depending on different technological criteria such as resistance to ethanol, pressure, high flocculation capacity, and good autolytic and foaming properties. All of these stress factors appear sequentially or simultaneously, and their superposition could amplify their inhibitory effects over yeast growth. Considering all of the above, it has supposed interesting to characterize the adaptive response of commercial yeast strain EC1118 during second-fermentation experiments under oenological/industrial conditions by transcriptomic profiling. We have pointed ethanol as the most relevant environmental condition in the induction of genes involved in respiratory metabolism, oxidative stress, autophagy, vacuolar and peroxisomal function, after comparison between time-course transcriptomic analysis in alcoholic fermentation and transcriptomic profiling in second fermentation. Other examples of parallelism include overexpression of cellular homeostasis and sugar metabolism genes. Finally, this study brings out the role of low-temperature on yeast physiology during second-fermentation.