Project description:Microbial decomposition of soil organic carbon (SOC) in Arctic permafrost is one of the most important, but poorly understood, factors in determining the greenhouse gas feedback of tundra ecosystems to climate. Here, we examine changes in the structure of microbial communities in an anoxic incubation experiment at either –2 or 8 °C for up to 122 days using both an organic and a mineral soil collected from the Barrow Environmental Observatory in northern Alaska, USA. Soils were characterized for SOC and geochemistry, and GeoChips 5.0 were used to determine microbial community structure and functional genes associated with C availability and Fe(III) reduction.
Project description:Anthropogenic nitrogen (N) deposition may affect soil organic carbon (SOC) decomposition, thus affecting the global terrestrial carbon (C) cycle. However, it remains unclear how the level of N deposition affects SOC decomposition by regulating microbial community composition and function, especially C-cycling functional genes structure. We investigated the effects of short-term N addition on soil microbial C-cycling functional gene composition, SOC-degrading enzyme activities, and CO2 emission in a 5-year field experiment established in an artificial Pinus tabulaeformis forest on the Loess Plateau, China.