Project description:CIC has recently been implicated as a negative prognostic factor in multiple cancers. CIC and ATXN1L have been reported as interactors in several cellular contexts including development and disease state. To investigate the relationship between CIC and ATXN1L on a transcriptomic level, CIC-KO and ATXN1L-KO cell lines were generated. Gene expression profiling of CIC-KO and ATXN1L-KO cell lines was performed by microarray and differentially expressed genes were compared. We found a high degree of overlap in differentially expressed genes in CIC-KO and ATXN1L-KO suggesting loss of either interacting partner to lead to similar transcriptomic changes.
Project description:CIC has recently been implicated as a negative prognostic factor in multiple cancers. CIC and ATXN1L have been reported as interactors in several cellular contexts including development and disease state. To investigate the relationship between CIC and ATXN1L on a transcriptomic level, CIC-KO and ATXN1L-KO cell lines were generated. Gene expression profiling of CIC-KO and ATXN1L-KO cell lines was performed by microarray and differentially expressed genes were compared. We found a high degree of overlap in differentially expressed genes in CIC-KO and ATXN1L-KO suggesting loss of either interacting partner to lead to similar transcriptomic changes.
Project description:Aberrations in Capicua (CIC) have recently been implicated as a negative prognostic factor in a multitude of cancer types through activation of the MAPK signalling cascade and derepression of oncogenic ETS transcription factors. The Ataxin-family protein ATXN1L has previously been reported to interact with CIC in developmental and disease contexts to facilitate the repression of CIC target genes. To further investigate this relationship, we performed functional in vitro studies utilizing ATXN1LKO and CICKO human cell lines and characterized a reciprocal functional relationship between CIC and ATXN1L.
Project description:Gene expression profiling of immortalized human mesenchymal stem cells with hTERT/E6/E7 transfected MSCs. hTERT may change gene expression in MSCs. Goal was to determine the gene expressions of immortalized MSCs.
Project description:We identified genome-wide binding patterns of CIC in several different cell types and find that CIC target genes are enriched for MAPK effector genes involved in cell cycle regulation and proliferation. CIC binding to its target genes is abolished by high MAPK activity, which leads to hyperacetylation and their transcriptional activation. Inhibition of MAPK signaling via MEK inhibition leads to recruitment of CIC to its target genes. Expression data of G144 cells after MEK inhibition and CIC knockout is available under accession E-MTAB-6681
Project description:Transcriptional profiling of human mesenchymal stem cells comparing normoxic MSCs cells with hypoxic MSCs cells. Hypoxia may inhibit senescence of MSCs during expansion. Goal was to determine the effects of hypoxia on global MSCs gene expression.