Project description:Dataset accompanying the study entitled “Early seeding of Richter transformation in chronic lymphocytic leukemiaâ€Â, which includes the analyses of longitudinal samples of 19 chronic lymphocytic leukemia patients developing Richter transformation.
Project description:Richter syndrome (RS) occurs in up to 15% of patients with chronic lymphocytic leukemia (CLL). While RS, usually represented by the histologic transformation to a diffuse large B-cell lymphoma (DLBCL), is associated with a very poor outcome, especially when clonally related to the pre-existing CLL, mechanisms leading to RS have not been clarified yet. To better understand the pathogenesis of RS, we analyzed a series of cases including: 59 RS, 28 CLL-phase of RS, 315 CLL and 127 de novo DLBCL. RS demonstrated a genomic complexity intermediate between CLL and DLBCL. Cell cycle deregulation via inactivation of TP53 and of CDKN2A was a main mechanism in the histologic transformation from CLL-phase, being present in approximately half of the cases, and affected the outcome of the RS patients. A second major subgroup was characterized by the presence of trisomy 12 and comprised one third of the cases. While RS shared some of the lesions seen in de novo DLBCL, its genomic profile was clearly separate. The CLL-phase preceding RS had not a generalized increase in genomic complexity when compared with untransformed CLL, but it presented clear differences in the frequency of specific genetic lesions. Genomic profiling of Richter-syndrome Chronic Lymphocytic Leukemia
Project description:THis is a simple ordinary differential equation model describing chemoimmunotherapy of chronic lymphocytic leukemia, including descriptions of the combinatorial effects of chemotherapy and adoptive cellular immunotherapy.
Project description:RATIONALE: The Epstein Barr virus can cause cancer and lymphoproliferative disorders. Ganciclovir is an antiviral drug that acts against the Epstein Barr virus. Arginine butyrate may make virus cells more sensitive to ganciclovir. Combining ganciclovir and arginine butyrate may kill more Epstein Barr virus cells and tumor cells.
PURPOSE: Phase I trial to study the effectiveness of arginine butyrate plus ganciclovir in treating patients who have cancer or lymphoproliferative disorders that are associated with the Epstein Barr virus.
Project description:B cell chronic lymphocytic leukemia - A model with immune response
Seema Nanda 1, , Lisette dePillis 2, and Ami Radunskaya 3,
1.
Tata Institute of Fundamental Research, Centre for Applicable Mathematics, Bangalore 560065, India
2.
Department of Mathematics, Harvey Mudd College, Claremont, CA 91711
3.
Department of Mathematics, Pomona College, Claremont, CA, 91711, United States
Abstract
B cell chronic lymphocytic leukemia (B-CLL) is known to have substantial clinical heterogeneity. There is no cure, but treatments allow for disease management. However, the wide range of clinical courses experienced by B-CLL patients makes prognosis and hence treatment a significant challenge. In an attempt to study disease progression across different patients via a unified yet flexible approach, we present a mathematical model of B-CLL with immune response, that can capture both rapid and slow disease progression. This model includes four different cell populations in the peripheral blood of humans: B-CLL cells, NK cells, cytotoxic T cells and helper T cells. We analyze existing data in the medical literature, determine ranges of values for parameters of the model, and compare our model outcomes to clinical patient data. The goal of this work is to provide a tool that may shed light on factors affecting the course of disease progression in patients. This modeling tool can serve as a foundation upon which future treatments can be based.
Keywords: NK cell, chronic lymphocytic leukemia, mathematical model, T cell., B-CLL.
Project description:Burkitt lymphoma cells can be latently infected with Epstein-Barr virus (EBV). The virus may be activated into its lytic cycle by small molecules, such as sodium butyrate. Other molecules, such as valproate and valpromide, block viral lytic reactivation. These pharmacological agents alter the cellular physiology that controls viral lytic gene expression. Changes in the cellular transcription were measured in response to one activator and two inhibitors of the Epstein-Barr virus lytic cycle in order to identify cellular genes that are potential regulators of the viral life cycle.
Project description:<p><b>Analysis of the chronic lymphocytic leukemia coding genome: role of NOTCH1 mutational activation</b></p> <p>The pathogenesis of chronic lymphocytic leukemia (CLL), the most common leukemia in adults, is still largely unknown since the full spectrum of genetic lesions that are present in the CLL genome, and therefore the number and identity of dysregulated cellular pathways, have not been identified. By combining next-generation sequencing and copy number analysis, we show here that the typical CLL coding genome contains less than 20 clonally represented gene alterations/case, including predominantly non-silent mutations and fewer copy number aberrations. These analyses led to the discovery of several genes not previously known to be altered in CLL. While most of these genes were affected at low frequency in an expanded CLL screening cohort, mutational activation of NOTCH1, observed in 8.3% of CLL at diagnosis, was detected at significantly higher frequency during disease progression toward Richter transformation (31.0%) as well as in chemorefractory CLL (20.8%). Consistent with the association of NOTCH1 mutations with clinically aggressive forms of the disease, NOTCH1 activation at CLL diagnosis emerged as an independent predictor of poor survival. These results provide initial data on the complexity of the CLL coding genome and identify a dysregulated pathway of diagnostic and therapeutic relevance.</p> <p><b>Genetic Lesions associated with Chronic Lymphocytic Leukemia transformation to Richter Syndrome</b></p> <p>Richter syndrome (RS) derives from the rare transformation of chronic lymphocytic leukemia (CLL) into an aggressive lymphoma, most commonly of the diffuse large B cell type (DLBCL). The molecular pathogenesis of RS is only partially understood. By combining whole-exome sequencing and copy-number analysis of 9 CLL-RS pairs and of an extended panel of 43 RS cases, we show that this aggressive disease typically arises from the predominant CLL clone by acquiring an average of ~20 genetic lesions/case. RS lesions are heterogeneous in terms of load and spectrum among patients, and include those involved in CLL progression and chemorefractoriness (TP53 disruption and NOTCH1 activation) as well as some not previously implicated in CLL or RS pathogenesis. In particular, disruption of the CDKN2A/B cell cycle regulator locus is associated with ~30% of RS cases. Finally, we report that the genomic landscape of RS is significantly different from that of de novo DLBCL, suggesting that they represent distinct disease entities. These results provide insights into RS pathogenesis, and identify dysregulated pathways of potential diagnostic and therapeutic relevance.</p>