Project description:In this study, we analyzed the genome-wide epigenetic and transcriptional patterns of the white-rot basidiomycete Pleurotus ostreatus throughout its life cycle. Our results performed by using high-throughput sequencing analyses revealed that strain-specific DNA methylation profiles are primarily involved in the repression of transposon activity, and suggest that 21 nt small RNAs play a key role in transposon silencing.Furthermore, we provide evidence that transposon-associated DNA methylation, but not sRNA production, is directly involved in the silencing of genes surrounded by transposons. Finally, we identified key genes activated in the fruiting process through the comparative analysis of transcriptomes.
Project description:Pleurotus ostreatus, also known as the oyster mushroom, is an active lignin decomposer in the forests. The genomes of the monokaryotic strains PC15 and PC9 have been used to characterize the content and distribution of transposable elements. This study analyzes the impact of transposable element insertions on the global transcriptome of P. ostreatus. The transcriptome of PC15 and PC9 has been analyzed in exponential growth during submerged fermentation in malt-yeast extract-sucrose medium RNAseq of two P. ostreatus strains: PC15 and PC9