Project description:Primary objectives: The primary objective is to investigate circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Primary endpoints: circulating tumor DNA (ctDNA) via deep sequencing for mutation detection and by whole genome sequencing for copy number analyses before start (baseline) with regorafenib and at defined time points during administration of regorafenib for treatment efficacy in colorectal cancer patients in terms of overall survival (OS).
Project description:Lion-head goose is the only large goose species in China, and it was one of the largest goose species in the world. Our previous study firstly reported a chromosome-level genome assembly of Lion-head goose (Anser cygnoides), a native breed in South China, through the combination of PacBio, Bionano, and Hi-C technologies. The fat content of foie gras is augmented during its preparation due to the special feeding regimen. Lion-head geese have a strong tolerance of massive energy intake and show a priority of fat accumulation in liver tissue. In this study, we studied for the first time the important differential genes that regulate fatty liver in Lion-head goose. After high-intake feeding, the fatty livers of Lion-head geese were distinctly characterized. The revelation of gene regulation is an important basis for the study of liver development and molecular characteristics for the Lion-head goose. To analyze the excellent fatty liver performance of Lion-head goose at the molecular level, we performed whole transcriptome analysis by high-throughput RNA sequencing to analyze the key regulatory genes that determine the fatty livers in high-intake feeding group compared with the normal livers in normally-fed Lion-head geese. We identified 716 differentially expressed mRNAs, 145 differentially expressed circRNAs, and 39 differentially expressed lncRNAs in the fatty livers in high-intake feeding group compared with the normal livers in normally-fed Lion-head geese, including upregulated and downregulated genes, respectively. GO enrichment analysis showed that these genes were significantly enriched in molecular function, involved in extracellular regions, DNA-binding transcription factor activity, extracellular matrix, heme binding and other life activities. We chose differentially expressed genes involved in either upregulation or downregulation, and we additionally confirmed the accuracy of sequencing at the RNA level. In summary, our research suggested that these differentially expressed genes may play important roles in fatty liver development in Lion-head goose. However, the functions and mechanisms of these significantly differentially expressed genes should be investigated in future studies.
2023-11-16 | GSE243829 | GEO
Project description:Whole Genome Sequencing of goose
| PRJNA767757 | ENA
Project description:Whole Genome Sequencing of goose
Project description:The black-footed ferret (Mustela nigripes) is a star example of the efforts of conservation programs in bringing endangered species back from the brink of extinction. As one of the world’s most endangered mammals, the vast majority of black-footed ferrets living in the wild today are the offspring of a founding captive population. The success of this ongoing breeding program, however, is threatened by inbreeding depression and the observed decline in pregnancy rates since its founding. As the wild and modern captive populations share a genetic history, the greatest difference between the two groups is the captive environment of the breeding program. In this study, we used RNA sequencing and proteomics for the first time in black-footed ferrets to explore whether the diet of wild ferrets versus captive diet variants could explain the differences in fertility and sperm characteristics observed between each population. We find that changes in both the transcriptional and proteomic profile of black-footed ferret ejaculate are strongly associated with differences in fertility, especially in pathways associated with innate immunity and metabolism; that transcriptional changes are further exacerbated by diet. Overall, our results support the hypothesis of ongoing environmental-dependent inbreeding depression in the black-footed ferret, with a need to re-evaluate dietary and environmental parameters of the conservation program; and also illustrates the value of multi-level genomics for conservation management programs.