Project description:C-to-T base editing mediated by CRISPR/Cas9 base editors (BEs) needs a G/C-rich PAM and the editing fidelity is compromised by unwanted indels and non-C-to-T substitutions. We developed CRISPR/Cpf1-based BEs to recognize a T-rich PAM and induce efficient C-to-T editing with few indels and/or non-C-to-T substitutions. The requirement of editing fidelity in therapeutic-related trials necessitates the development of CRISPR/Cpf1-based BEs, which also facilitates base editing in A/T-rich regions.
Project description:Cornelia de Lange syndrome (CdLS) is an autosomal dominant disease mainly caused by mutations in the Nipped-B-like protein (NIPBL) gene resulting in the alteration of the cohesin pathway. Here, we generated human induced pluripotent stem cells (hiPSCs) from a CdLS patient carrying a mutation in the NIPBL gene, c.5483G>A, and tested CRISPR-Cas based approaches to repair the genetic defect. We applied an efficient and precise method of gene correction through CRISPR-Cas induced homology directed repair (HDR), which allowed the generation of hiPSC clones with regular karyotype and preserved stemness. The efficient and precise gene replacement strategy developed in this study can be extended to the modification of other genomic loci in hiPSCs. Isogenic wild-type and mutated hiPSCs produced with the CRISPR-Cas technology are fundamental CdLS cellular models to study the disease molecular determinants and identifying therapeutic targets.
Project description:Gene disruption by CRISPR/Cas9 is highly efficient and relies on the error-prone non-homologous end-joining (NHEJ) pathway. Conversely, precise gene editing requires homology-directed repair (HDR), which occurs at a lower frequency than NHEJ in mammalian cells. Here, by testing whether manipulation of DNA repair factors would improve HDR efficacy, we show that transient ectopic co-expression of RAD52 and a dominant-negative 53BP1 (dn53BP1) synergize to enable efficient HDR using a single-stranded oligonucleotide DNA donor template at multiple loci in human cells, including patient-derived induced pluripotent stem (iPS) cells. Co-expression of RAD52 and dn53BP1 improves multiplexed HDR-mediated editing, whereas expression of RAD52 alone enhances HDR with Cas9 nickase. Our data show that the frequency of NHEJ-mediated DSB repair in the presence of these two factors is not suppressed, and suggest that dn53BP1 competitively antagonizes 53BP1 to augment HDR in combination with RAD52. Importantly, co-expression of RAD52 and dn53BP1 does not alter Cas9 off-target activity. These findings support the use of RAD52 and dn53BP1 co-expression to overcome bottlenecks that limit HDR in precision genome editing.
Project description:The RNA-guided DNA endonuclease Cas9 has emerged as a powerful new tool for genome engineering. Cas9 creates targeted double-strand breaks (DSBs) in the genome. Knock-in of specific mutations (precision genome editing) requires homology-directed repair (HDR) of the DSB by synthetic donor DNAs containing the desired edits, but HDR has been reported to be variably efficient. Here, we report that linear DNAs (single and double-stranded) engage in a high-efficiency HDR mechanism that requires only ~35 nucleotides of homology with the targeted locus to introduce edits ranging from 1 to 1000 nucleotides. We demonstrate the utility of linear donors by introducing fluorescent protein tags in human cells and mouse embryos using PCR fragments. We find that repair is local, polarity-sensitive, and prone to template switching, characteristics that are consistent with gene conversion by synthesis-dependent strand-annealing (SDSA). Our findings enable rational design of synthetic donor DNAs for efficient genome editing.
Project description:The targeting range of CRISPR-Cas9 base editors (BEs) is limited by their G/C-rich PAM sequences. To overcome this limitation, we developed a CRISPR/Cpf1-based BE by fusing the rat cytosine deaminase APOBEC1 to a catalytically inactive version of Lachnospiraceae bacterium Cpf1. The base editor recognizes a T-rich PAM sequence and converts C to T in human cells with low levels of indels, non-C-to-T substitutions and off-target editing.
2018-03-18 | GSE110136 | GEO
Project description:gene editing in rice by CRISPR/Cpf1
| PRJNA392486 | ENA
Project description:Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing 2
| PRJNA803880 | ENA
Project description:Harnessing DSB repair to promote efficient homology-dependent and -independent prime editing 1