Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:The ideal genome sequence for medical interpretation is complete and diploid, capturing the full spectrum of genetic variation. Toward this end, there has been progress in discovery of single nucleotide polymorphism (SNP) and small (<10bp) insertion/deletions (indels), but annotation of larger structural variation (SV) including copy number variation (CNV) has been less comprehensive, even with available diploid sequence assemblies. We applied a multi-step sequence and microarray-based analysis to identify numerous previously unknown SVs within the first genome sequence reported from an individual.
Project description:Nucleotide sequence accession number
The nucleotide sequence of Escherichia virus EcS1 was
deposited in the DDBJ database under accession number
LC371242.
2019-10-23 | PXD011454 | JPOST Repository
Project description:The complete chloroplast genome of Desmodium uncinatum (Fabaceae)
| PRJNA664604 | ENA
Project description:The complete organelle genomes of Glycyrrhiza uralensis Fisch (Fabaceae)
| PRJNA721216 | ENA
Project description:The complete chloroplast genome of Glycyrrhiza yunnanensis L (Fabaceae)
| PRJNA793638 | ENA
Project description:Complete nucleotide sequence of chloroplast genome of Linaria vulgaris.