Project description:Alkaline phosphatase (ALP) is known to be a marker for several somatic stem cells and cancer cells. We found that human squamous cell carcinoma HeLa cells are comprised by ALP-positive and negative cells. Single cell-derived colony assay revealed that the former cells are labile with respect to ALP activity, but the latter are stable. We cloned ALP-negative cells from the HeLa cells, and named H-1 clone. DNA microarray analysis revealed that gene expression pattern of H-1 cells is almost the same with that of their parental HeLa cells, but several genes for glycoprotein hormone alpha chain, ras-related and estrogen-regulated growth inhibitor, ALP, and Frizzled-10 was respectively 18.2, 9.6, 9.2 and 10.5–fold are upregulated in the HeLa cells. Although there is no evidence that the ALP-positive cells are cancer stem cells (CSCs) at present, HeLa cells comprised by ALP-positive and -negative cells may be a good model for CSC study in future.
Project description:MicroRNAs (miRNAs) play an important role in the regulation of gene expression and are often dysregulated in disease. The recent development of the CRISPR-Cas9 gene-editing system, composed of the Cas9 nuclease in complex with a single guide RNA (sgRNA), allows researchers to direct DNA cleavage at a predetermined site and to conduct genome-scale knockout screens. To determine the functional role of miRNAs in cancer, we designed and constructed a library of 7,382 sgRNAs to target 85% of the 1,881 annotated human miRNA stem-loops. We then examined the role of miRNAs in HeLa cell fitness by monitoring the change in frequency of each sgRNA over time. We identified 44 pro-proliferative miRNAs from two replicate experiments, including miR-31, a known cervical cancer overexpressing miRNA that enhances HeLa cell proliferation. We also examined the role of miRNAs in NCI-N87 gastric cancer cells and identified 10 pro-fitness and 10 anti-fitness miRNAs. In both screens, many of the pro-fitness miRNAs identified are overexpressed in tumors cervical tumors for HeLa or gastric tumors for NCI-N87. In summary, we present a CRISPR miRNA-targeted screen which was able to identify both known and novel fitness-associated miRNAs in the HeLa and NCI-N87 cell lines.
Project description:Alkaline phosphatase (ALP) is known to be a marker for several somatic stem cells and cancer cells. We found that human squamous cell carcinoma HeLa cells are comprised by ALP-positive and negative cells. Single cell-derived colony assay revealed that the former cells are labile with respect to ALP activity, but the latter are stable. We cloned ALP-negative cells from the HeLa cells, and named H-1 clone. DNA microarray analysis revealed that gene expression pattern of H-1 cells is almost the same with that of their parental HeLa cells, but several genes for glycoprotein hormone alpha chain, ras-related and estrogen-regulated growth inhibitor, ALP, and Frizzled-10 was respectively 18.2, 9.6, 9.2 and 10.5M-bM-^@M-^Sfold are upregulated in the HeLa cells. Although there is no evidence that the ALP-positive cells are cancer stem cells (CSCs) at present, HeLa cells comprised by ALP-positive and -negative cells may be a good model for CSC study in future. HeLa cells consist of two cell types, namely alkaline phosphatase (ALP)-positive and negative cells. To distinguish gene expression pattern between these two types of cells, microarray analysis was performed using HeLa cells (parental cell line; a mixture of ALP-positive and negative cells) and H-1 cells, ALP-negative cells derived from HeLa cells