Project description:Enhancers are transcription factor platforms that also bind RNA polymerase II and generate enhancer RNAs (eRNA). Although eRNAs have been suggested as predictors of enhancer activities and possibly key components facilitating transcription, there is little genetic evidence to support this. We address the biology of eRNAs in vivo and investigate eRNA patterns, expression levels and possible functions within a mammary-specific super-enhancer that is composed of three units with distinct transcriptional capacities. We show that eRNA levels do not correspond with the activities of their respective enhancer units. However, changes in eRNA expression upon deletion of individual enhancer units reflect the change in overall super-enhancer activity. These data provide genetic evidence that eRNA levels are not a reliable readout of individual enhancers, but they predict superenhancer activity in the absence of constituent elements.
Project description:Prostate cancer (PCa) is one of the most commonly diagnosed cancers in males worldwide. lncRNAs (long non-coding RNAs) play a significant role in the occurrence and development of PCa. eRNAs (enhancer RNA) and SE-lncRNAs (super-enhancer lncRNA) are important elements of lncRNAs, but the role of eRNAs and SE-lncRNAs in PCa remains largely unclear. In this work, we identified 681 eRNAs and 292 SE-lncRNAs that were expressed differentially in PCa using a microarray. We constructed a transcriptional regulation network that eRNA related enhancer and the target genes shared the same TF binding motifs. Further, we investigated whether CTCF played a role in mediating the transcriptional regulation network. eRNAs, especially those that regulate androgen response genes, may be candidates for prognostic biomarkers and therapy targets. Our work provide a new perspective for developing medical treatments and therapies for prostate cancer.
Project description:The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs) are transcripts of > 200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ~10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest an unexpected role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.
Project description:The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs) are transcripts of > 200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ~10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest an unexpected role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.
Project description:The genome is pervasively transcribed to produce a vast array of non-coding RNAs (ncRNAs). Long noncoding RNAs (lncRNAs) are transcripts of > 200 nucleotides and are best known for their ability to regulate gene expression. Enhancer RNAs (eRNAs) are subclass of lncRNAs that are synthesized from enhancer regions and have also been shown to coordinate gene expression. The biological function and significance of most lncRNAs and eRNAs remain to be determined. Epithelial to mesenchymal transition (EMT) is a ubiquitous cellular process that occurs during cellular migration, homeostasis, fibrosis, and cancer-cell metastasis. EMT-transcription factors, such as SNAI1 induce a complex transcriptional program that coordinates the morphological and molecular changes associated with EMT. Such complex transcriptional programs are often subject to coordination by networks of ncRNAs and thus can be leveraged to identify novel functional ncRNA loci. Here, using a genome-wide CRISPR activation (CRISPRa) screen targeting ~10,000 lncRNA loci we identified ncRNA loci that could either promote or attenuate EMT. We discovered a novel locus that we named SCREEM (SNAI1 cis-regulatory eRNAs expressed in monocytes). The SCREEM locus contained a cluster of eRNAs that when activated using CRISPRa induced expression of the neighboring gene SNAI1, driving concomitant EMT. However, the SCREEM eRNA transcripts themselves appeared dispensable for the induction of SNAI1 expression. Interestingly, the SCREEM eRNAs and SNAI1 were co-expressed in activated monocytes, where the SCREEM locus demarcated a monocyte-specific super-enhancer. These findings suggest an unexpected role for SNAI1 in monocytes. Exploration of the SCREEM-SNAI axis could reveal novel aspects of monocyte biology.
Project description:The functional importance of gene enhancers in regulated gene expression is well established. In addition to widespread transcription of long non-coding RNA (ncRNA) transcripts in mammalian cells, bidirectional ncRNAs referred to as eRNAs are present on enhancers. However, it has remained unclear whether these eRNAs are functional, or merely a reflection of enhancer activation. Here, we report that 17 ?-estradiol (E2)-bound estrogen receptor alpha (ER?) on enhancers causes a global increase in eRNA transcription on enhancers adjacent to E2 upregulated coding genes. These induced eRNAs, as functional transcripts, appear to exert important roles for the observed ligand-dependent induction of target coding genes, causing an increased strength of specific enhancer:promoter looping initiated by ER? binding. Cohesin, present on many ER?-regulated enhancers even prior to ligand treatment, apparently contributes to E2-dependent gene activation by stabilizing E2/ER?/eRNA-induced enhancer:promoter looping. Our data indicate that eRNAs are likely to exert important functions in many regulated programs of gene transcription. The ChIP-seqs in this study measure the binding landscape of master transcription regulator of estrogen signaling - ER?, together with common histone marks including H3K27ac and H3K4me1 in MCF7 cells. These data serve as the basis to understand the enhancer map and subsequent analysis of eRNA expression using GRO-seq. The GRO-seq measures the trancription of nascent RNAs in the genome. From MCF7 cells treated with veichle or estrodial, we could identify estrogen-regulated eRNAs and subsequently could study their functions.
Project description:Increasing evidence has demonstrated that enhancer RNAs (eRNAs) play essential roles in human diseases. However, the complete identification of disease-related subsets of eRNAs remains a major challenge. Here, we construct an atlas of common and rare genetic variants influencing the expression of enhancer RNAs across 49 human tissues. We identify 11,757 eRNA quantitative trait loci (eRNA-QTLs) associated with the expression of 89.75% annotated eRNAs. Mechanically, eRNA-QTLs frequently altered the binding motifs of transcription factors and were further experimentally validated by CRISPR-based base editing. We also observed that 28.48% of cancer signals were co-localized with eRNA-QTLs. Utilizing our newly developed eRNA transcriptome-wide association study (eRNA-TWAS) model, we have effectively identified 259 cancer susceptibility eRNAs spanning 23 distinct cancer types. Notably, among the identified eRNAs, these eRNA-linked cancer susceptibility genes exhibit significant dependence across various cancer cell lines. Interestingly, cancer risk can be significantly influenced by rare functional variants that are linked to eRNAs with transcriptomic outliers. Additionally, we develop a comprehensive and flexible data portal for exploring the genetic underpinnings of eRNAs. Overall, this study reveals a systematic landscape of genetic dependencies on eRNAs across pan-cancers and significantly expands the pool of disease-associated eRNAs.