Project description:Libraries were prepared by using two methods. The one is ThruPlex kit from Rubicon Genomics, the other is TCS-ligation based method described in our paper.
Project description:Aneuploidy and aging are correlated; however, a causal link between these two phenomena has remained elusive. Here we show that yeast disomic for a single native yeast chromosome generally have a decreased replicative lifespan. In addition, the extent of this lifespan deficit correlates with the size of the extra chromosome. We identified a mutation in BUL1 that rescues both the lifespan deficit and a protein trafficking defect in yeast disomic for chromosome 5. Bul1 is an E4 ubiquitin ligase adaptor involved in a protein quality-control pathway that targets membrane proteins for endocytosis and destruction in the lysosomal vacuole thereby maintaining protein homeostasis. Concurrent suppression of the aging and trafficking phenotypes suggests that disrupted membrane protein homeostasis in aneuploid yeast may contribute to their accelerated aging. The data reported here demonstrate that aneuploidy can impair protein homeostasis, shorten lifespan, and may contribute to age-associated phenotypes.
Project description:We investigated the transcriptional response of yeast Saccharomyces cerevisiae bmh1 and bmh2 deletion mutants to potassium starvation. To this end yeast strains were grown for 60 min in media without potassium or in media with a standard potassium concentration (50 mM KCl). Using Serial Analysis of Gene Expression (SAGE)-tag sequencing the effect of potassium starvation on the transcriptome was determined. This study is a follow-up of our previous study (Anemaet IG and van Heusden GPH. 2014. BMC Genomics:1040)( GEO accession number GSE57093).
Project description:Effect of FLO8 or MSS11 deletion and -overexpression on yeast transcript profiles compared to wild type in laboratory yeast strains Σ1278b and S288c.
Project description:Telomere chromatin structure is pivotal for maintaining genome stability by regulating the binding of telomere-associated proteins and inhibition of a DNA damage response. In yeast, the silent information regulator (Sir) proteins bind to terminal telomeric repeats and to subtelomeric X-elements resulting in histone deacetylation and transcriptional silencing. Herein, we show that sir2 mutant strains display a very specific loss of a nucleosome residing in the X-element. Most yeast telomeres contain an X-element and the nucleosome occupancy defect in sir2 mutants is remarkably consistent between different telomeres.