Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.
Project description:Broad-spectrum antibiotics are frequently prescribed to children. The period of early-childhood represents a time where the developing microbiota may be more sensitive to environmental perturbations, which thus might have long-lasting host consequences. We hypothesized that even a single early-life broad-spectrum antibiotic course at a therapeutic dose (PAT) leads to durable alterations in both the gut microbiota and host immunity. In C57BL/6 mice, a single early-life tylosin (macrolide) course markedly altered the intestinal microbiome, and affected specific intestinal T-cell populations and secretory IgA expression, but PAT-exposed adult dams had minimal immunologic alterations. No immunological effects were detected in PAT-exposed germ-free animals; indicating that microbiota are required for the observed activities. Transfer of PAT-perturbed microbiota led to delayed sIgA expression indicating that the altered microbiota is sufficient to transfer PAT-induced effects. PAT exposure had lasting and transferable effects on microbial community network structure. Together these results indicate the impact of a single therapeutic early-life antibiotic course altering the microbiota and modulating host immune phenotypes that persist long after exposure has ceased.