Project description:Analysis of purified immune and breast tumor cells from three major compartments where cancer and immune cells interact: primary tumor, tumor draining lymph nodes (tumor invaded or tumor free), and peripheral blood. The results suggests that node-positive patients’ immune regulation and functionality is down-regulated compared to node-negative patients. CD45+ Immune and ESA+ tumor cells were purified from breast cancer patients' primary tumor, tumor-draining lymph node, and peripheral blood (ficoll) and placed onto Agilent microarrays using the dye-swap method. A universal human reference was used as a reference for the patient samples.
Project description:Analysis of purified immune and breast tumor cells from three major compartments where cancer and immune cells interact: primary tumor, tumor draining lymph nodes (tumor invaded or tumor free), and peripheral blood. The results suggests that node-positive patients’ immune regulation and functionality is down-regulated compared to node-negative patients.
Project description:Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes. The transcriptomic study comprises 16 samples from Lymph node metastasis from infiltrating ductal breast carcinoma, 18 samples from Primary node-positive infiltrating ductal,7 samples from Primary node-negative infiltrating ductal and 3 samples from Unaffected lymph node were included. Their RNA was isolated and prepared for hybridization to human Affymetrix GeneChip arrays.
Project description: Lymph node involvement is a major prognostic variable in breast cancer. Whether the molecular mechanisms that drive breast cancer cells to colonize lymph nodes are shared with their capacity to form distant metastases is yet to be established. In a transcriptomic survey aimed at identifying molecular factors associated with lymph node involvement of ductal breast cancer, we found that luminal differentiation, assessed by the expression of estrogen receptor (ER) and/or progesterone receptor (PR) and GATA3, was only infrequently lost in node-positive primary tumors and in matched lymph node metastases. The transcription factor GATA3 critically determines luminal lineage specification of mammary epithelium and is widely considered a tumor and metastasis suppressor in breast cancer. Strong expression of GATA3 and ER in a majority of primary node-positive ductal breast cancer was corroborated by quantitative RT-PCR and immunohistochemistry in the initial sample set, and by immunohistochemistry in an additional set from 167 patients diagnosed of node-negative and –positive primary infiltrating ductal breast cancer, including 102 samples from loco-regional lymph node metastases matched to their primary tumors, as well as 37 distant metastases. These observations suggest that loss of luminal differentiation is not a major factor driving the ability of breast cancer cells to colonize regional lymph nodes.
Project description:Tumor-infiltrating cells are considered as a homogeneous populations in the tumor microenvironment. We used single cell RNA sequencing (scRNA-seq) to analyze the diversity of tumor-infiltrating cells of the tumor foci, draining lymph node and peripheral blood from patients with triple-negative breast cancer who received chemotherapy.
Project description:Analyses whether, and if so, gene expression can add prognostic information in the subgroups of patients with tumours with low or high proliferative activity. As proliferation measured with MAI and PPH3 has repeatedly been shown to be the best prognosticator in node-negative breast cancer (high sensitivity, little overtreatment). Total RNA were extracted from 94 lymph node negative breast cancer patients
Project description:Lymph node involvement is the most important prognostic factor in breast cancer, but little is known about the underlying molecular changes. First, to identify a molecular signature associated with nodal metastasis, gene expression analysis was performed on a homogeneous group of 96 primary breast tumors, balanced for lymph node involvement. Each tumor was diagnosed as a poorly differentiated, estrogen positive, her2-neu negative invasive ductal cancer. (Affymetrix Human U133 Plus 2.0 microarray chips). A model, including 241 genes was built and validated on an internal and external dataset performed with Affymetrix technology. All samples used for validation had the same characteristics as the initial tumors. The area under the ROC curve (AUC) for the internal dataset was 0.646 and 0.651 for the external datasets. Thus, the molecular profile of a breast tumor reveals information about lymph node involvement, even in a homogeneous group of tumors. However, an AUC of 0.65 indicates only a weak correlation. Our model includes multiple kinases, apoptosis related and zinc ion binding genes. Pathway analysis using the Molecular Signatures Database revealed relevant gene sets (BAF57, Van 't Veer). Next, miRNA profiling was performed on 82/96 tumors using Human MiRNA microarray chips (Illumina). Eight miRNAs were significantly differentially expressed according to lymph node status at a significance level of 0.05, without correcting for multiple testing. The analysis of the inverse correlation between a miRNA and its computationally predicted targets point to general deregulation of the miRNA machinery potentially responsible for lymph node invasion. In conclusion, our results provide evidence that lymph node involvement in breast cancer is not a random process. Gene expression profiling: A training set of 96 patients and an independent internal dataset of 20 patients balanced for lymph node involvement was selected from the multidisciplinary breast centre database miRNA profiling not provided in this Series.
Project description:Breast cancer is the most common malignancy that develops in women, responsible for the highest cancer-associated death rates. Triple negative breast cancers (TNBC) represent an important subtype that have an aggressive clinical phenotype, are associated with a higher likelihood of metastasis and are not responsive to current targeted therapies. miRNAs have emerged as an attractive candidate for molecular biomarkers and treatment targets in breast cancer, but their role in the progression of TNBC remains largely unexplored. This study has investigated miRNA expression profiles in 31 primary TNBC cases and in 13 lymph node metastases compared with 23 matched normal breast tissues to determine miRNAs associated with the initiation of this disease subtype and those associated with its metastasis. 71 miRNAs were differentially expressed in TNBC, the majority of which have previously been associated with breast cancer, including members of the miR-200 family and the miR-17-92 oncogenic cluster, suggesting that miRNAs involved in the initiation of TNBC are not subtype specific. However, the repertoire of miRNAs expressed in lymph node negative and lymph node positive TNBCs were largely distinct from one another. In particular, miRNA profiles associated with lymph node negative disease tended to be up-regulated, while those associated with lymph node positive disease were down-regulated and largely overlapped with the profiles of their matched lymph node metastases. miRNA expression profiles were examined in 31 primary TNBC cases and in 13 lymph node metastases compared with 23 matched normal breast tissues