Project description:We analyzed expression changes between JAK2V617F positive bone marrow cells and JAK2V617F negative cells We further analyzed how TNF receptor (receptor 1 or receptor 2) block influenced these changes in JAKV617F positive relative to JAK2V617F negative
Project description:Interferon alpha (IFNa) is an effective treatment for patients with myeloproliferative neoplasms (MPN). In addition to inducing hematological responses in most MPN patients, IFNa reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNa on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNa on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNa treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNa treatment induces cell-cycle activation of Jak2V617F mutant long-term hematopoietic stem cells (LT-HSC) and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNa on Jak2V617F mutant and normal hematopoiesis and suggest that IFNa achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN, by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNa and targeting the proliferating downstream progeny with JAK2-inhibitors or cytotoxic chemotherapy. HSC-enriched population from WT (CD45.1) or Jak2VF knockin (CD45.2), after 4 weeks of interferon alpha or vehicle treatment. N=4 per condition
Project description:Interferon alpha (IFNa) is an effective treatment for patients with myeloproliferative neoplasms (MPN). In addition to inducing hematological responses in most MPN patients, IFNa reduces the JAK2V617F allelic burden and can render the JAK2V617F mutant clone undetectable in some patients. The precise mechanism underlying these responses is incompletely understood and whether the molecular responses that are seen occur due to the effects of IFNa on JAK2V617F mutant stem cells is debated. Using a murine model of Jak2V617F MPN, we investigated the effects of IFNa on Jak2V617F MPN-propagating stem cells in vivo. We report that IFNa treatment induces hematological responses in the model and causes depletion of Jak2V617F MPN-propagating cells over time, impairing disease transplantation. We demonstrate that IFNa treatment induces cell-cycle activation of Jak2V617F mutant long-term hematopoietic stem cells (LT-HSC) and promotes a predetermined erythroid-lineage differentiation program. These findings provide insights into the differential effects of IFNa on Jak2V617F mutant and normal hematopoiesis and suggest that IFNa achieves molecular remissions in MPN patients through its effects on MPN stem cells. Furthermore, these results support combinatorial therapeutic approaches in MPN, by concurrently depleting dormant JAK2V617F MPN-propagating stem cells with IFNa and targeting the proliferating downstream progeny with JAK2-inhibitors or cytotoxic chemotherapy.
Project description:Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) In this dataset, we compare the gene expression data of patients JAK2V617F vs. CALR-mutated MPN patients.
Project description:We describe a critical role for Cdk6 in JAK2V617F+ MPN evolution. The absence of Cdk6 ameliorates clinical symptoms and prolongs survival of JAK2V617F fl/+ vav-Cre mice. The Cdk6 protein interferes with three hallmarks of disease: besides regulating malignant stem cell quiescence, it promotes NFkB signaling and contributes to cytokine production while inhibiting apoptosis. The treatment with palbociclib did not mirror these effects, showing that the functions of Cdk6 in MPN pathogenesis are largely kinase-independent.
Project description:Janus kinases (JAKs) mediate cytokine signaling, cell growth and hematopoietic differentiation. Gain-of-function mutations activating JAK2 signaling are seen in the majority of myeloproliferative neoplasm (MPN) patients, most commonly due to the JAK2V617F driver allele. While clinically-approved JAK inhibitors improve symptoms and outcomes in MPNs, remissions are rare, and mutant allele burden does not substantively change with chronic JAK inhibitor therapy in most patients. This has been postulated to be due to incomplete dependence on constitutive JAK/STAT signaling, alternative signaling pathways, and/or the presence of cooperating disease alleles; however we hypothesize this is due to the inability of current JAK inhibitors to potently and specifically abrogate mutant JAK2 signaling. We therefore developed a conditionally inducible mouse model allowing for sequential activation, and then inactivation, of Jak2V617F from its endogenous locus using a Dre-rox/Cre-lox dual orthogonal recombinase system. Deletion of oncogenic Jak2V617F abrogates the MPN disease phenotype, induces mutant-specific cell loss including in hematopoietic stem/progenitor cells, and extends overall survival to an extent not observed with pharmacologic JAK inhibition. Furthermore, reversal of Jak2V617F in MPN cells with antecedent loss of Tet2 abrogates the MPN phenotype and inhibits mutant stem cell persistence suggesting cooperating epigenetic-modifying alleles do not alter dependence on mutant JAK/STAT signaling. Our results suggest that mutant-specific inhibition of JAK2V617F represents the best therapeutic approach for JAK2V617F-mutant MPN and demonstrate the therapeutic relevance of a dual-recombinase system to assess mutant-specific oncogenic dependencies in vivo.
Project description:Myeloproliferative neoplasms (MPNs) arise via the acquisition of a driver mutation in a single hematopoietic stem cell (HSC), often decades prior to the development of a clinical phenotype. The most common MPN driver mutation, JAK2V617F, activates aberrant JAK/STAT signaling via cytokine receptors critical for myelopoiesis. Over time, this MPN HSC clone outcompetes its normal counterparts, leading to excessive myeloid cell production and contributes to lymphopenia in patients with MPNs and leades to elevated neutrophil-to-lymphocyte ratio (NLR), which is predictive of disease-related complications including thrombosis and mortality. We conducted this study to learn how hematopoiesis from the JAK2V617F clone affects lymphopoiesis in patients with MPNs. Although myeloid proliferation via aberrant JAK2 signaling is the most apparent mechanistic link between JAK2V617F and MPN phenotypes, our findings demonstrate that impaired lymphoid differentiation is an additional feature of JAK2V617F hematopoiesis, leading to the rarity of JAK2V617F lymphocytes despite the dominance of JAK2V617F HSCs in patients with MPNs. The combination of prolific myelopoiesis and defective lymphopoiesis from the JAK2V617F clone is a potential connection between MPN pathology and the surrogate markers, including NLR and lymphopenia, which hold prognostic significance. Based on our data, we speculate that, defective JAK2V617F lymphopoiesis and the consequent increased burden of lymphopoiesis from residual normal HSC clones drives the appearance of abnormal lymphocyte subsets, lymphoproliferative disease or T cell exhaustion in MPNs. Further study of MPN lymphopoiesis provides an opportunity to define the immune deficits underlying the myriad complications that affect patients with MPNs.
Project description:Philadelphia chromosome-negative myeloproliferative neoplasms (MPN) consist of primary myelofibrosis (PMF), polycythemia vera (PV), essential thrombocythemia (ET) and seconday myelofibrosis (pPV-MF or pET-MF) In this dataset, we compare the gene expression data of bone marrow (BM) or peripheral blood (PB) mononuclear cells of CD34+ cells from JAK2V617F mutated patients vs. healthy donors
Project description:Philadelphia-chromosome negative myeloproliferative neoplasms (MPNs) including polycythemia vera, essential thrombocythemia and primary myelofibrosis show an inherent tendency for transformation into leukemia (MPN-blast phase), which is hypothesized to be accompanied by acquisition of additional genomic lesions. We, therefore, examined chromosomal abnormalities by high-resolution single-nucleotide polymorphism (SNP) array in 88 MPN patients, as well as 71 cases with MPN-blast phase, and correlated these findings with their clinical parameters. Frequent genomic alterations were found in MPN after leukemic transformation with up to 3-fold more genomic changes per sample compared to samples in chronic phase (p<0.001). We identified commonly altered regions involved in disease progression including established targets (ETV6, TP53 and RUNX1), as well as new candidate genes on 7q, 16q, 19p and 21q. Moreover, trisomy 8 or amplification of 8q24 (MYC) was almost exclusively detected in JAK2V617F(-) cases with MPN-blast phase. Remarkably, copy-number neutral-loss of heterozygosity (CNN-LOH) on either 7q or 9p including homozygous JAK2V617F was related to decreased survival after leukemic transformation (p=0.01 and p=0.016, respectively). Our high density SNP-array analysis of MPN genomes in the chronic compared to leukemic stage identified novel target genes and provided prognostic insights associated with the evolution to leukemia. Keywords: SNP-chip To identify oncogenic lesions in MPD, we performed a genome-wide analysis of primary MPD samples using high-density SNP arrays (Affymetrix GeneChip).
Project description:Background: Patients with JAK2V617F-positive myeloproliferative neoplasms (MPNs) and clonal hematopoiesis of indeterminate potential (CHIP) face a significantly elevated risk of cardiovascular diseases (CVDs). Endothelial cells (ECs) carrying the JAK2V617F mutation have been detected in many MPN patients. In this study, we investigated the molecular basis for the high incidence of cardiovascular complications in MPN patients. Methods: We investigated the impact of endothelial JAK2V617F mutation on CVD development using both transgenic murine models and MPN patient-derived induced pluripotent stem cell lines. Results and Conclusions: Our investigations revealed that JAK2V617F mutant ECs promote CVDs by impairing endothelial function and undergoing endothelial-to-mesenchymal transition (EndMT). Importantly, we discovered that inhibiting the endothelial thrombopoietin receptor MPL suppressed JAK2V617F-induced EndMT and prevented cardiovascular dysfunction caused by mutant ECs. Notably, the endothelial MPL receptor is not essential for the normal physiological regulation of blood cell counts and cardiac function, rendering it a promising therapeutic target for preventing or ameliorating cardiovascular complications in patients with MPNs.