Project description:Furfural is a key inhibitor in S. cerevisiae fermentation causing serious economic loss. To understand the toxic mechanisms of furfural-induced genomic instability and phenotypic evolution, we mapped chromosomal alterations in 21 furfural-treated yeast strains by whole genome SNP microarrays at a resolution about 1kb.
Project description:Furfural is a key inhibitor in S. cerevisiae fermentation causing serious economic loss. To disclose of the recombinational DNA lesions induced by furfural, we analyzed 19 JSC25-derived sectored colonies using chromosome IV SNP-specific microarrays. The parent diploid S. cerevisiae strain JSC25 (constructed by crossing two haploid strains isogenic W303-1A and YJM789) was homologous for ade2-1 alleles. One copy of gene SUP4-o, an ochre-suppressing tRNA, was inserted at the end of right arm of chromosome IV. Under normal conditions, the colony color of JSC25 is pink. A crossover event occurred on the right arm of chromosome IV at the first cell cycle would result in a white/red sectored colony on solid plate.
Project description:Furfural is a potential mutagenic agent. To explore the global effect of furfural on genomic intergrity, chromosomal alterations in 14 furfural-treated isolates of JSC25-1 strain were determined by whole genome SNP microarrays at a resolution about 1kb. Our results showed furfural exposure results in striking elevations of both mitotic recombination and aneuploidy events in yeast.
Project description:HMF and furfural were pulse added to xylose-utilizing Saccharomyces cerevisiae during either the glucose consumption phase or the xylose consumption phase. Transcriptome samples were collected before and one hour after pulsing of inhibitors.
Project description:Resistance of Saccharomyces cerevisiae to high furfural concentration is based on NADPH-dependent reduction by at least two oxireductases. Biofuels derived from lignocellulosic biomass hold promises for a sustainable fuel economy, but several problems hamper their economical feasibility. One important problem is the presence of toxic compounds in processed lignocellulosic hydrolysates with furfural as a key toxin. While Saccharomyces cerevisiae has some intrinsic ability to reduce furfural to the less toxic furfuryl alcohol, higher resistance is necessary for process conditions. By comparing an evolved, furfural resistant strain and its parent in micro-aerobic, glucose-limited chemostats at increasing furfural challenge, we elucidate key mechanism and the molecular basis of both natural and high-level furfural resistance. At lower furfural concentrations, NADH-dependent oxireductases are the main defence mechanism. At concentrations above 15 mM, however, [1-13C]-flux and global array-based transcript analysis demonstrated that the NADPH-generating flux through pentose-phosphate pathway increases and that NADPH-dependent oxireductases became the major resistance mechanism. The transcript analysis further revealed that iron transmembrane transport is up-regulated in response to furfural. While these responses occur in both strains, high-level resistance in the evolved strain was based on strong induction of ADH7, the uncharacterised ORF YKL071W and 4 further, likely NADPH-dependent oxireductases. By overexpressing the ADH7 gene and the ORF YKL071W, we inverse engineered significantly increased furfural resistance in the parent strain, thereby demonstrating these two enzymes to be key elements of the resistance phenotype.
Project description:Carbendazim (Methyl benzimidazol-2-ylcarbamate; MBC) is an antimitotic drug used for broad-spectrum fungicide, antineoplastic and mutagen in microbial breeding. Using a customized SNP microarray technology, this work revealed the effect of MBC on genomic instability (loss of heterozygosity, chromosomal rearrangements and aneuploidy) in the diploid yeast Saccharomyces cerevisiae JSC25.