Project description:Interleukin (IL)-13 is a signature cytokine of type 2 inflammation important for the pathogenesis of various diseases, including allergic diseases. Signal transducer and activator of transcription (STAT) 6 is a critical transcriptional factor for the IL-13 signals; however, it remains unknown how expression of the IL-13-induced genes is differentiated by the transcriptional machineries. In this study, we identified IL-13-induced transcriptional factors in lung fibroblasts using DNA microarrays in which SOX11 was included. Knockdown of SOX11 down-regulated expression of periostin and CCL26, both of which are known to be downstream molecules of IL-13, whereas enforced expression of SOX11 together with IL-13 stimulation enhanced expression of periostin. Moreover, we found that in DNA microarrays combining IL-13 induction and SOX11 knockdown there exist both SOX11-dependent and -independent molecules in IL-13-inducible molecules. In the former, many inflammation-related and fibrosis-related molecules, including periostin and CCL26, are involved. These results suggest that SOX11 acts as a trans-acting transcriptional factor downstream of STAT6 and that in lung fibroblasts the IL-13 signals are hierarchically controlled by STAT6 and SOX11.
Project description:To identify candidates for trans-acting factors for IL-13–induced genes in lung fibroblasts, we searched transcriptional factors among IL-13–inducible molecules in lung fibroblasts
Project description:IL-4/STAT6-regulated transcriptome and proteome were compared in primary B cells isolated from wild-type and STAT6-deficient mice. B cells were purified from the spleen and stimulated in vitro with anti-CD40 and LPS or anti-IgM-F(ab)2 in the presence or absence of IL-4. Transcriptome analysis was performed with oligonucleotide microarrays. Global relative quantification of proteins was achieved by gel-enhanced label-free liquid chromatography/mass spectrometry (LC/MS). Hierarchical clustering and principal component analysis revealed that IL-4-induced changes of the transcriptome were almost completely dependent on STAT6. In contrast, the quantitative proteome analysis revealed that the expression of many IL-4-regulated proteins changes even in the absence of STAT6. The top 75 proteins with changes in abundance levels induced by IL-4 in a STAT6-dependent manner were also found to be regulated at the transcriptional level. Most of these proteins were not previously known to be regulated by STAT6 in B cells. We confirmed the MS-based quantitative proteome data by flow cytometric and Western blot analysis of selected proteins. This study provides a framework for further functional characterization of STAT6-regulated proteins in B cells that might be involved in germinal center formation and class switch recombination.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors. Differential gene expression between SOX11-positive Z138 and SOX11-negative Z138 MCL cell lines xenotransplanted in SCID mices derived tumors.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL). We have recently demonstrated SOX11 tumorigenic potential in vivo by showing a significant reduction on tumor growth of SOX11-knockdown MCL cells in xenograft experiments, confirming the clinical observations that SOX11 may play an important role in the aggressive behavior of MCL (Vegliante et al., 2013). However, the specific mechanisms regulated by SOX11 that promote the oncogenic and rapid tumor growth of aggressive MCL still remain to be elucidated. To further characterize the potential oncogenic mechanisms regulated by SOX11 in MCL, we have analyzed the GEP derived from the xenograft SOX11-positive and knockdown xenograft derived tumors. Differential gene expression between SOX11-positive Z138 and SOX11-negative Z138 MCL cell lines xenotransplanted in SCID mices derived tumors. To determine the transcriptional programs regulated by SOX11 we first generated a MCL cellular model with reduced SOX11 protein levels by infecting MCL cell lines with lentiviral particles carrying shRNA plasmids specifically targeting SOX11 (shSOX11.1 and shSOX11.3). Next, CB17-severe combined immunodeficient (CB17-SCID) mice (Charles River Laboratory, Wilmington, MA) were subcutaneously inoculated into their lower dorsum with Z138 shSOX11.1, shSOX11.3, shControl in Matrigel basement membrane matrix and compared the GEP of SOX11-positive and SOX11-negative MCL xenotransplant derived tumors using the Affymetrix U133+2.0 microarrays.
Project description:The neural transcription factor SOX11 is overexpressed in aggressive lymphoid neoplasms mainly in mantle cell lymphoma (MCL), but its functional role in malignant B-cells is unknown. To identify target genes transcriptionally regulated by SOX11 in malignant lymphoid cells, we have used Gene Expression Profiling (GEP) after SOX11 silencing in MCL cell lines.