Project description:Helicobacter pylori is a highly successful and important human pathogen that causes chronic gastritis, peptic ulcer diseases and gastric cancer. Innate immunity plays an important role of the primary defense against pathogens and epidemiological studies have suggested a role of toll-like receptor 1 (TLR1) in the risk of H. pylori acquisition. We performed microarray analysis of gastric mucosal biopsy specimens from H. pylori-positive and uninfected subjects; infection was associated with an ~15-fold up-regulation of TLR10 (p <0.001). Quantitative RT-PCR confirmed TLR10 mRNA levels were increased 3-fold in H. pylori-infection (p <0.001) and immunohistochemistory using anti-TLR10 polyclonal antibodies showed increased TLR10 expression in gastric epithelial cells of infected individuals. In vitro experiments where H. pylori was co-cultured with NCI-N87 gastric cells showed significant H. pylori-specific up-regulation of TLR10 mRNA levels and a correlation with TLR2 mRNA levels (R = 0.87, P <0.001). We compared combinations of TLRs for their ability to mediate NF-_B activation. NF-_B activation was increased following exposure to heat killed H. pylori or H. pylori-LPS only with the TLR2/TLR10 heterodimer. These findings suggest TLR10 is a functional receptor involved in the innate immune response to H. pylori infection and that TLR2/TLR10 heterodimer possibly functions in the recognition of H. pylori-LPS.
Project description:Helicobacter pylori (H. pylori) is a human pathogen that infects almost half of the world’s population. Infection with H. pylori is frequently associated with chronic gastritis and can even lead to gastric and duodenal ulcers and gastric cancer. Although the persistent colonization of H. pylori and the development of H. pylori-associated gastritis remain poorly understood, it is believed that, in gastric mucosa, the modulated gastric epithelial cells (GECs) by H. pylori are key contributors. We used microarrays to detail the global programme of gene expression in Helicobacter pylori infected-gastric epithelial cell line AGS cells and identified up-regulated genes induced by Helicobacter pylori infection.
Project description:This SuperSeries is composed of the following subset Series: GSE25146: Changes in gene expression in AGS cells in response to Helicobacter pylori lipopolysaccharide GSE25147: Changes in gene expression in MKN45 cells in response to Helicobacter pylori lipopolysaccharide GSE25148: Changes in gene expression in HEK-TLR2 cells in response to Helicobacter pylori lipopolysaccharide Refer to individual Series
Project description:Definition of HsrA (HP1043) regulon through in-vivo ChIP-seq analysis reveals its role in controlling Helicobacter pylori crucial cellular functions
Project description:Helicobacter pylori infection reprograms host gene expression and influences various cellular processes, which have been investigated by cDNA microarray in vitro culture cells and in vivo patients of the chronic abdominal complaint. In this study,the effects of H. pylori infection on host gene expression in the gastric antral mucosa of patients with chronic gastritis were examined.
Project description:Helicobacter pylori (H.pylori) infection is an important factor in the occurrence of human gastric diseases, but its pathogenic mechanism is not clear. N6-methyladenosine (m6A) is the most prevalent reversible methylation modification in mammalian RNA and it plays a crucial role in controlling many biological processes. We used MeRIP-seq technology to sequence the GES-1 cells infected with Helicobacter pylori(H. pylori) for 48 h.