Project description:A network governing DNA integrity was identified in yeast by a global genetic analysis of synthetic fitness or lethality defect (SFL) interactions. Within this network, multiple functional modules or mini-pathways were defined according to their common patterns of global SFL interactions and available protein-protein interaction information. Modules or genes involved in DNA replication, DNA replication checkpoint signaling, and oxidative stress response were identified as the major guardians against lethal spontaneous DNA damage, efficient repair of which requires the functions of the DNA damage checkpoint signaling and multiple DNA repair pathways. This genome-wide genetic interaction network also revealed potential roles of a number of genes and modules in mitotic DNA replication and maintenance of genomic stability. These include DIA2, NPT1, HST3, HST4, and the CSM1/LRS4 module (CSM1m). Likewise, the CTF18 module (CTF18m), previously implicated in sister chromatid cohesion, was found to participate in the DNA replication checkpoint. Keywords: dose response
Project description:The S. cerevisiae genome is the most well-characterized eukaryotic genome and one of the simplest in terms of identifying open reading frames (ORFs), yet its primary annotation has been updated continually in the decade since its initial release in 1996 (Goffeau et al., 1996). The Saccharomyces Genome Database (SGD; www.yeastgenome.org) (Hirschman et al., 2006), the community-designated repository for this reference genome, strives to ensure that the S. cerevisiae annotation is as accurate and useful as possible. At SGD, the S. cerevisiae genome sequence and annotation are treated as a working hypothesis, which must be repeatedly tested and refined. In this paper, in celebration of the tenth anniversary of the completion of the S. cerevisiae genome sequence, we discuss the ways in which the S. cerevisiae sequence and annotation have changed, consider the multiple sources of experimental and comparative data on which these changes are based, and describe our methods for evaluating, incorporating and documenting these new data.
Project description:Transcriptome and network analyses in Saccharomyces cerevisiae reveal that amphotericin B and lactoferrin synergy disrupt metal homeostasis and stress response
Project description:Transcriptome and network analysis of amphotericin B and lactoferrin drug synergy in Saccharomyces cerevisiae reveals down-regulation of the stress response and dysregulation of zinc and iron homeostasis
Project description:Aneuploidy-induced proteotoxic stress can be effectively tolerated without dosage compensation, genetic mutations or stress responses