Project description:Bacteriophage – host dynamics and interactions are important for microbial community composition and ecosystem function. Nonetheless, empirical evidence in engineered environment is scarce. Here, we examined phage and prokaryotic community composition of four anaerobic digestors in full-scale wastewater treatment plants (WWTPs) across China. Despite relatively stable process performance in biogas production, both phage and prokaryotic groups fluctuated monthly over a year of study period. Nonetheless, there were significant correlations in their α- and β-diversities between phage and prokaryotes. Phages explained 40.6% of total prokaryotic community composition, much higher than the explainable power by abiotic factors (14.5%). Consequently, phages were significantly (P<0.010) linked to parameters related to process performance including biogas production and volatile solid concentrations. Association network analyses showed that phage-prokaryote pairs were deeply rooted, and two network modules were exclusively comprised of phages, suggesting a possibility of co-infection. Those results collectively demonstrate phages as a major biotic factor in controlling bacterial composition. Therefore, phages may play a larger role in shaping prokaryotic dynamics and process performance of WWTPs than currently appreciated, enabling reliable prediction of microbial communities across time and space.
Project description:Background: Methane yield and biogas productivity of biogas plants depend on microbial community structure and functionality, substrate supply, and general process parameters. Little is known, however, about the correlations between microbial community function and the process parameters. To close this knowledge gap the microbial community of 40 industrial biogas plants was evaluated by a metaproteomics approach in this study. Results: Liquid chromatography coupled to tandem mass spectrometry (Elite Hybrid Ion Trap Orbitrap) enabled the identification of 3138 metaproteins belonging to 162 biological processes and 75 different taxonomic orders. Therefore, database searches were performed against UniProtKB/Swiss-Prot and several metagenome databases. Subsequent clustering and principal component analysis of these data allowed to identify four main clusters associated to mesophilic and thermophilic process conditions, upflow anaerobic sludge blanket reactors and sewage sludge as substrate. Observations confirm a previous phylogenetic study of the same biogas plant samples that was based on 16S-rRNA gene by De Vrieze et al. (2015) (De Vrieze, Saunders et al. 2015). Both studies described similar microbial key players of the biogas process, namely Bacillales, Enterobacteriales, Bacteriodales, Clostridiales, Rhizobiales and Thermoanaerobacteriales as well as Methanobacteriales, Methanosarcinales and Methanococcales. In addition, a correlation study and a Gephi graph network based on the correlations between the taxonomic orders and process parameters suggested the presence of various trophic interactions, e.g. syntrophic hydrogen transfer between Thermoanaerobacteriales and Methanomicrobiales. For the elucidation of the main biomass degradation pathways the most abundant 1% of metaproteins were assigned to the KEGG map 1200 representing the central carbon metabolism. Additionally, the effect of the process parameters (i) temperature, (ii) organic loading rate (OLR), (iii) total ammonia nitrogen (TAN) and (iv) sludge retention time (SRT) on these pathways was investigated. For example high TAN correlated with hydrogenotrophic methanogens and bacterial one-carbon metabolism, indicating syntrophic acetate oxidation. Conclusion: This study shows the benefit of large-scale proteotyping of biogas plants, enabling the identification of general correlations between the process parameters and the microbial community structure and function. Changes in the level of microbial key functions or even in the microbial community type represent a valuable hint for process problems and disturbances.
Project description:The physiological and transcriptional response of Nitrosomonas europaea biofilms to phenol and toluene was examined and compared to suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors under continuous flow conditions of growth medium containing ammonia as growth substrate. The responses of N. europaea biofilms to the aromatic hydrocarbons phenol and toluene were determined during short-term (3 h) additions of each compound to the biofilms. Ammonia oxidation in the biofilms was inhibited 50% by 60 uM phenol and 100 uM toluene. These concentrations were chosen for microarray analysis of phenol- and toluene-exposed N. europaea biofilms. Liquid batch cultures of exponentially growing N. europaea cells were harvested alongside the biofilms to determine differential gene expression between attached and suspended growth of N. europaea. Four sample groups of N. europaea cells were used in this study, with biological triplicates of each group. Groups were: Control (untreated) biofilms, phenol-exposed biofilms, toluene-exposed biofilms, and exponentially growing suspended cells. Biofilms were grown in Drip Flow Biofilm Reactors containing 4 independent growth channels and subject to 2 hour inhibition tests. During each experiment, 2 biofilm channels served as control with no inhibitor present and the other 2 biofilm channels were exposed to either 60 uM phenol or 100 uM toluene. Nitrite production was monitored throughout the experiment, and the given concentrations of phenol and toluene resulted in 50% inhibition of ammonia oxidation by the biofilms. Suspended cells were grown in batch reactors. Three 4-plex NimbleGen microarray chips were used, and each chip contained one sample from each experimental group. QC of samples was determined by spectrophotometric methods and using Agilent bioanalyzer traces to determine purity and integrity of RNA and cDNA. A sample tracking report was used to verify the correct hybridization of each sample to the intended array.
Project description:Meta-proteomics analysis approach in the application of biogas production from anaerobic digestion has many advantages that has not been fully uncovered yet. This study aims to investigate biogas production from a stable 2-stage chicken manure fermentation system in chemical and biological perspective. The diversity and functional protein changes from the 1st stage to 2nd stage is a good indication to expose the differential metabolic processes in anaerobic digestion. The highlight of identified functional proteins explain the causation of accumulated ammonia and carbon sources for methane production. Due to the ammonia stress and nutrient limitation, the hydrogenotrophic methanogenic pathway is adopted as indicative of meta-proteomics data involving the key methanogenic substrates (formate and acetate). Unlike traditional meta-genomic analysis, this study could provide both species names of microorganism and enzymes to directly point the generation pathway of methane and carbon dioxide in investigating biogas production of chicken manure.
Project description:The hydrothermal vent gammaproteobacterium Thiomicrospira crunogena inhabits an unstable environment and must endure dramatic sweeps in habitat chemistry. This sulfur chemolithoautotroph responds to changes in dissolved inorganic carbon (DIC; = CO2 + HCO3- + CO3-2) availability with a carbon concentrating mechanism (CCM), in which whole-cell affinity for DIC, as well as the intracellular DIC concentration, increase substantially under DIC-limitation. To determine whether this CCM is regulated at the level of transcription, cells cultivated under high-DIC conditions in chemostats were resuspended in growth medium with low concentrations of DIC, and CCM development was tracked in the presence and absence of RNA polymerase inhibitor rifampicin. The induction of the CCM, as measured by silicone oil centrifugation, was hindered in the presence of rifampicin. Similar results were observed for carboxysome gene transcription and assembly, as assayed by qRT-PCR and transmission electron microscopy, respectively. Genome-wide transcription patterns, assayed via microarrays, were compared for cells grown under DIC-limitation versus ammonia limitation. In addition to carboxysome genes, two novel genes (Tcr_1019 and Tcr_1315), present in other organisms including chemolithoautotrophs, but whose function(s) have not been elucidated in any organism, were found to be upregulated under low-DIC conditions. Likewise, under ammonia limitation, in addition to the expected enhancement of ammonia transporter and PII-gene transcription, the transcription of two novel genes was measurably enhanced (Tcr_0466 and Tcr_2018). Upregulation of all four genes was verified via qRT-PCR (Tcr_1019: 4-fold; Tcr_1315: ~7-fold; Tcr_0466: >200-fold; Tcr_2018: 7-fold), suggesting novel components are part of the response to nutrient limitation by this organism. In this study Thiomicrospira crunogena cells were grown under inorganic carbon limitation and ammonia limitation (high inorganic carbon concentrations) to examine genome wide transcription responses
Project description:Investigation of the critical biomass of acclimated microbial communities to high ammonia concentrations for a successful bioaugmentation of biogas anaerobic reactors with ammonia inhibition