Project description:Sablefish (Anoplopoma fimbria) are in the suborder Cottioidei, which also includes stickleback and lumpfish. This species inhabits coastal regions of the northeastern and northwestern Pacific Ocean from California to Japan. A commercial fishery for sablefish began to flourish in the 1960s, though a downward trend in stock biomass and landings has been observed since 2010. Aquaculture protocols have been developed for sablefish; eggs and sperm from wild-caught and hatchery-reared captive broodstock are used to generate offspring that reach market size in about two years. Parentage analyses show that survival in aquaculture varies among families. Growth rate and disease resistance also vary among individuals and cohorts, but the extent to which genetics and the environment contribute to this variation is unclear. The sablefish genome assembly reported here will form the foundation for SNP-based surveys designed to detect genetic markers associated with survival, growth rate, and pathogen resistance. Beyond its contribution to sablefish domestication, the sablefish genome can be a resource for the management of the wild sablefish fishery. The assembly generated in this study had a length of 653 Mbp, a scaffold N50 of 26.74 Mbp, a contig N50 of 2.57 Mbp, and contained more than 98% of the 3640 Actinopterygii core genes. We placed 620.9 Mbp (95% of the total) onto 24 chromosomes using a genetic map derived from six full-sib families and Hi-C contact data.
Project description:Sablefish (Anoplopoma fimbria) is a marine groundfish that supports valuable fisheries in the North Pacific Ocean and holds promise for marine aquaculture. Limited information is available, however, about its reproductive biology. This study aimed to characterize the complete reproductive cycle, including seasonal changes in gonadal development (macroscopic and histological), plasma sex steroid levels (17β-estradiol -E2-, and 11-ketotestosterone -11KT-), gonadosomatic and hepatosomatic indices (GSI, and HSI), and condition factor (K) of female and male sablefish captured off the Washington coast. Adult fish (209 females, 159 males) were caught by longline monthly from August 2012 to August 2013. Early signs of recruitment of ovarian follicles into secondary growth, indicated by oocytes containing small yolk granules and cortical alveoli, were first observed in March. Oogenesis progressed during spring and summer, and fully vitellogenic follicles were first observed in July. Vitellogenic growth was correlated with increases in plasma E2, GSI, HSI and K. Periovulatory females, indicated by fully-grown oocytes with migrating germinal vesicles and hydrated oocytes, were found from November to February. At this stage, plasma E2 and GSI reached maximal levels. In males, proliferating cysts containing spermatocytes were first observed in April. Testicular development proceeded during spring and summer, a period during which all types of male germ cells were found. The first clusters of spermatozoa appeared in July, concomitant with a 5.2-fold increase in GSI. Spermiating males were observed from November to April; at this time, spermatids were absent or greatly reduced, and testis lobules were filled with spermatozoa. The highest levels of plasma 11KT were found in males at this stage. Postspawning ovaries and testes, and basal steroids levels were found in fish captured from February to April. These results suggest that sablefish in coastal Washington initiate their reproductive cycle in March/April and spawn primarily in January/February.
Project description:BackgroundThe skin microbiome of marine fish is thought to come from bacteria in the surrounding water during the larval stages, although it is not clear how different water conditions affect the microbial communities in the water and, in turn, the composition and development of the larval skin microbiome. In aquaculture, water conditions are especially important; claywater and greenwater are often used in larval rearing tanks to increase water turbidity. Here, we explored the effects of these water additives on microbial communities in rearing water and on the skin of first-feeding sablefish larvae using 16S rRNA gene sequencing. We evaluated three treatments: greenwater, claywater, and greenwater with a switch to claywater after 1 week.ResultsWe observed additive-specific effects on rearing water microbial communities that coincided with the addition of larvae and rotifer feed to the tanks, such as an increase in Vibrionaceae in greenwater tanks. Additionally, microbial communities from experimental tank water, especially those in claywater, began to resemble larval skin microbiomes by the end of the experiment. The differential effects of the additives on larval sablefish skin microbiomes were largest during the first week, post-first feed. Bacteria associated with greenwater, including Vibrionaceae and Pseudoalteromonas spp., were found on larval skin a week after the switch to claywater. In addition to additive-specific effects, larval skin microbiomes also retained bacterial families likely acquired from their hatchery silos.ConclusionsOur results suggest that larval sablefish skin microbiomes are most sensitive to the surrounding seawater up to 1 week following the yolk-sac stage and that claywater substituted for greenwater after 1 week post-first feed does not significantly impact skin-associated microbial communities. However, the larval skin microbiome changes over time under all experimental conditions. Furthermore, our findings suggest a potential two-way interaction between microbial communities on the host and the surrounding environment. To our knowledge, this is one of the few studies to suggest that fish might influence the microbial community of the seawater.
Project description:In this study, zoonotic Anisakis simplex was isolated and identified from the outermost layer of the stomach of diseased Anoplopoma fimbria at an industrial farm in Liaoning, North China (122.1842 E, 39.2616 N). With the completion of A. simplex mitochondrial genome sequencing, the full-length mitochondrial genome of A. simplex was assembled and analyzed. All results indicate that the complete mitochondrial genome of A. simplex was 13,899 bp. There were 20 tRNAs and 12 protein-coding genes (PCGs), and two rRNA all located at the heavy (H) strand. Besides, the phylogenetic tree of 19 A. simplex isolated from different host species was constructed. The results showed that A. simplex isolated from A. fimbria was clustered with Oncorhynchus nerka isolate in a clade. To sum up, our research results would further provide essential data for systematics and evolution study of A. simplex.