Project description:We use microarray to analyze gene expression after adipocyte constitutively active HDAC4 expression in inguinal white adipose tissue
Project description:Adult mouse were kept at room temperature, RNAseq was performed for interscapular brown, subscapular white and inguinal white adipose tissue
Project description:This SuperSeries is composed of the following subset Series: GSE25323: Biological Aging and Circadian Mechanisms in Murine Brown Adipose Tissue, Inguinal White Adipose Tissue, and Liver (Nov 2009 dataset) GSE25324: Biological Aging and Circadian Mechanisms in Murine Brown Adipose Tissue, Inguinal White Adipose Tissue, and Liver (Jan 2010 dataset) Refer to individual Series
Project description:Excessive fat accumulation is a major risk factor for the development of type 2 diabetes.To determine the mechanisms by wich TP53INP2 regulates adipogenesis, gene expression profile was performed in inguinal white adipose tissue fromTP53INP2-deficient mice.
Project description:Differentiation of brown adipocytes is a crucial process for adaptive thermogenesis, which is stimulated by various factors. We found robust browning of inguinal white adipose tissue in UCP1/ApoE-DKO mice, but not in ApoE-KO mice, under high-fat diet condition. We used microarray to determine the genes specifically regulated in the browning white adipose tissue in UCP1/ApoE-DKO mice.
Project description:Purpose: To investigate the involvement of mTORC1 as a mediator of the actions of the PPARγ ligand rosiglitazone in subcutaneous inguinal white adipose tissue transcriptome; Methods: Mice bearing regulatory associated protein of mTOR (Raptor) deletion and therefore mTORC1 deficiency exclusively in adipocytes (adiponectin Cre recombinase) and littermate controls were fed a high-fat diet supplemented or not with the PPARγ agonist rosiglitazone (30 mg/kg/day) for 8 weeks and evaluated for inguinal white adipose tissue transcriptome (Rnaseq); Results: 3,2425 genes had their correspondent mRNA levels altered by either adipocyte Raptor deficiency or rosiglitazone administration or their combination. Among those, 408 genes modulated by rosiglitazone required mTORC1. Conclusion: PPARγ and mTORC1 are essential partners in the regulation of a cluster of genes in inguinal white adipose tissue.
Project description:Using high throughput sequencing we report 5hmC levels, and gene expression changes in mouse Inguinal white adipose tissue upon exposure to room temperature and 7 days to cold in Tet1 floxed wild-type control and adipose selectiveTet1 KO mice.