Project description:Patients with the genetic skin blistering disease recessive dystrophic epidermolysis bullosa (RDEB) develop aggressive and metastatic cutaneous squamous cell carcinoma which is the principal cause of premature mortality in this patient group. We performed gene expression profiling of RDEB-SCC cells compared to RDEB keratinocytes in order to identify tumor-specific molecules that could potentially be exploited for detection, diagnosis, and therapy of this devastating disease.
Project description:Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenetic skin disorder caused by mutations in the COL7A1 gene. Missing type VII collagen leads to severe blister formation and frequent chronic wounds. Patients suffering from RDEB are prone to develop particulary aggressive squamous cell carcinoma (SCC), representing the major cause of mortality. This dataset provides Affymetrix microarray (ClariomD) based whole transcriptome data on RNA isolated from cultured primary RDEB keratinocytes (RDEB-KC) as well as RDEB squamous cell carcinoma (RDEB-SCC). Cells were derived from punch biopsies or tumor resections from patients with confirmed diagnosis recessive dystrophic epidermolysis bullosa (RDEB). Primary KC and SCC were cultivated in fully defined medium till subconfluency. Total RNA was isolated and microarray assay performed.
Project description:Recessive dystrophic epidermolysis bullosa (RDEB) is a monogenetic skin disorder caused by mutations in the COL7A1 gene. Missing type VII collagen leads to severe blister formation and frequent chronic wounds. Patients suffering from RDEB are prone to develop particulary aggressive squamous cell carcinoma (SCC), representing the major cause of mortality. This dataset provides Affymetrix microarray (miRNA4.1) based whole transcriptome data on RNA isolated from cultured primary keratinocytes (KC) as well as squamous cell carcinoma (SCC). Cells were derived from punch biopsies or tumor resections from either healthy donors or SCC patients with or without the diagnosis recessive dystrophic epidermolysis bullosa (RDEB). Primary KC and SCC were cultivated in fully defined medium till subconfluency. Total RNA was isolated and microarray assay performed.
Project description:Recessive dystrophic epidermolysis bullosa (RDEB) is a severely debilitating disorder caused by mutations in COL7A1 and is characterized by extreme skin fragility, chronic inflammation and fibrosis. A majority of RDEB patients develop squamous cell carcinoma (SCC), a highly aggressive skin cancer with limited treatment options currently available. In this study, we utilized a novel approach leveraging WGS and RNA-seq across three different tissues in a single RDEB patient to gain insight into possible mechanisms of RDEB-associated SCC progression and to identify potential novel therapeutic options. As a result, we identified PLK-1 as a possible candidate for targeted therapy and discovered microsatellite instability and accelerated aging as factors potentially contributing to the aggressive nature and early onset of RDEB SCC.
Project description:Patients with the genetic skin blistering disease recessive dystrophic epidermolysis bullosa (RDEB) develop aggressive cutaneous squamous cell carcinoma (cSCC). Metastasis leading to mortality is greater in RDEB than in other patient groups with cSCC. Here we investigate the dermal component in RDEB using mRNA expression profiling to compare cultured fibroblasts isolated from individuals without cSCC and directly from tumor matrix in RDEB and non-RDEB samples. While gene expression of RDEB normal skin fibroblasts resembled that of cancer-associated fibroblasts, RDEB cancer-associated fibroblasts exhibited a distinct and divergent gene expression profile, with a large proportion of the differentially expressed genes involved in matrix and cell adhesion. RDEB cancer-associated fibroblasts conferred increased adhesion and invasion to tumor and non-tumor keratinocytes. Reduction of COL7A1, the defective gene in RDEB, in normal dermal fibroblasts led to increased type XII collagen, thrombospondin-1 and Wnt-5A, while re-expression of wild type COL7A1 in RDEB fibroblasts decreased type XII collagen, thrombospondin- 1, and Wnt-5A expression, reduced tumor cell invasion in organotypic culture, and restricted tumor growth in vivo. Overall our findings demonstrate that matrix composition in patients with RDEB is a permissive environment for tumor development, and type VII collagen directly regulates the composition of matrix proteins secreted by dermal and cancer-associated fibroblasts. 16 samples
Project description:Patients with the genetic skin blistering disease recessive dystrophic epidermolysis bullosa (RDEB) develop aggressive cutaneous squamous cell carcinoma (cSCC). Metastasis leading to mortality is greater in RDEB than in other patient groups with cSCC. Here we investigate the dermal component in RDEB using mRNA expression profiling to compare cultured fibroblasts isolated from individuals without cSCC and directly from tumor matrix in RDEB and non-RDEB samples. While gene expression of RDEB normal skin fibroblasts resembled that of cancer-associated fibroblasts, RDEB cancer-associated fibroblasts exhibited a distinct and divergent gene expression profile, with a large proportion of the differentially expressed genes involved in matrix and cell adhesion. RDEB cancer-associated fibroblasts conferred increased adhesion and invasion to tumor and non-tumor keratinocytes. Reduction of COL7A1, the defective gene in RDEB, in normal dermal fibroblasts led to increased type XII collagen, thrombospondin-1 and Wnt-5A, while re-expression of wild type COL7A1 in RDEB fibroblasts decreased type XII collagen, thrombospondin- 1, and Wnt-5A expression, reduced tumor cell invasion in organotypic culture, and restricted tumor growth in vivo. Overall our findings demonstrate that matrix composition in patients with RDEB is a permissive environment for tumor development, and type VII collagen directly regulates the composition of matrix proteins secreted by dermal and cancer-associated fibroblasts.