Project description:The goal of this study was to compare NGS-derived murine myometrial progenitor cell transcriptome profiling (RNA-seq) of an animal model of uterine fibroid tumorigenesis in rats exposed during uterine development to an endocrine-disrupting chemical, diethylstilbestrol (DES) versus vehicle (VEH) control, unexposed animals, to determine the pathways and biological processes, whose gene expression may be altered as a result of the exposure.
Project description:Environmental exposure to endocrine-disrupting chemicals (EDCs) is associated with uterine fibroids (UFs) development, the most common benign tumors in women of reproductive age. It has been shown that UFs originate from abnormal myometrial stem cells (MMSCs) and there is evidence that defective DNA repair capacity could be involved in the emergence of mutations with implications for tumorigenesis. Moreover, the multifunctional cytokine TGF-β1 has been related to UF progress and some works revealed its connection with certain DNA damage repair pathways. Eker rats develop spontaneous uterine tumors in adulthood, which makes it a useful model for the study of UFs emergence The purpose of this study was to evaluate the impact of endocrine-disrupting chemicals (EDCs exposure on TGF-β1 pathway and nucleotide excision repair (NER) capacity, on Eker rat myometrial stem cells (MMSCs).
Project description:We report gene expression profiles in the median basal hypothalamus of 21-day old female wistar rats from the F1 and F3 generation after exposure to a mixture of Endocrine Disrupting Chemicals or vehicle
Project description:We use a larval zebrafish model to assess the transcriptomic alterations caused by sub-phenotypic concentrations of two endocrine disrupting drugs: Raloxifene and Resorcinol.
Project description:We use a larval zebrafish model to assess the transcriptomic alterations caused by sub-phenotypic concentrations of two endocrine disrupting drugs: BPA and TBBPA.
Project description:Background: Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of human biomedical science. Many such classifiers discovered thus far lack vigorous statistical and experimental validations, with their stability and reliability unknown. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors were used in this study to search for classifiers of endocrine disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and all tissue combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results: Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their intended chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions: The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. While GSEA appeared to provide a flexible and effective tool for application of gene classifiers, a similar but more refined algorithm, connectivity mapping, should also be explored for ecotoxicological applications. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. chemical abbreviations: EE2, 17α-ethynyl estradiol; FAD, fadrozole; TRB, 17 -trenbolone; FIP, fipronil; PRO, prochloraz; FLU, flutamide; MUS, muscimol; KET, ketoconazole; TRI, trilostane; VIN, vinclozolin Since this study was conducted in several phases, three different version of Agilent zebrafish two color microarrays were used based on their availability at the time. These include G2518A (designID 013223) and G2519F (designID 015064, 019161). There were a total of 58 treatment conditions with various combinations of chemical, tissue type, exposure time, and gender. Each condition contained eight to 12 independent samples, half from chemical-treated fish and half from water- control fish.
Project description:Evaluating the toxicity of two endocrine disrupting chemicals, Raloxifene and Resorcinol using a larval zebrafish transcriptomic approach
Project description:We employed whole-genome microarray expression profiling in 48 hpf zebrafish as a tool to classify the activity of 25 endocrine disrupting chemicals
Project description:Background: Development and application of transcriptomics-based gene classifiers for ecotoxicological applications lag far behind those of human biomedical science. Many such classifiers discovered thus far lack vigorous statistical and experimental validations, with their stability and reliability unknown. A combination of genetic algorithm/support vector machines and genetic algorithm/K nearest neighbors were used in this study to search for classifiers of endocrine disrupting chemicals (EDCs) in zebrafish. Searches were conducted on both tissue-specific and all tissue combined datasets, either across the entire transcriptome or within individual transcription factor (TF) networks previously linked to EDC effects. Candidate classifiers were evaluated by gene set enrichment analysis (GSEA) on both the original training data and a dedicated validation dataset. Results: Multi-tissue dataset yielded no classifiers. Among the 19 chemical-tissue conditions evaluated, the transcriptome-wide searches yielded classifiers for six of them, each having approximately 20 to 30 gene features unique to a condition. Searches within individual TF networks produced classifiers for 15 chemical-tissue conditions, each containing 100 or fewer top-ranked gene features pooled from those of multiple TF networks and also unique to each condition. For the training dataset, 10 out of 11 classifiers successfully identified the gene expression profiles (GEPs) of their intended chemical-tissue conditions by GSEA. For the validation dataset, classifiers for prochloraz-ovary and flutamide-ovary also correctly identified the GEPs of corresponding conditions while no classifier could predict the GEP from prochloraz-brain. Conclusions: The discrepancies in the performance of these classifiers were attributed in part to varying data complexity among the conditions, as measured to some degree by Fisher’s discriminant ratio statistic. This variation in data complexity could likely be compensated by adjusting sample size for individual chemical-tissue conditions, thus suggesting a need for a preliminary survey of transcriptomic responses before launching a full scale classifier discovery effort. While GSEA appeared to provide a flexible and effective tool for application of gene classifiers, a similar but more refined algorithm, connectivity mapping, should also be explored for ecotoxicological applications. The distribution characteristics of classifiers across tissues, chemicals, and TF networks suggested a differential biological impact among the EDCs on zebrafish transcriptome involving some basic cellular functions. chemical abbreviations: EE2, 17α-ethynyl estradiol; FAD, fadrozole; TRB, 17 -trenbolone; FIP, fipronil; PRO, prochloraz; FLU, flutamide; MUS, muscimol; KET, ketoconazole; TRI, trilostane; VIN, vinclozolin