Project description:We used whole genome microarray expression profiling as a discovery platform to identify high grade diffuse glioma associated differently expressed genes comparing with low grade diffuse glioma.
Project description:Purpose: More than 90% of children with diffuse intrinsic pontine glioma (DIPG) die within 2 years of diagnosis. There is a dire need to identify therapeutic targets, however lack of patient material for research has limited progress. We evaluated a large cohort of diffuse intrinsic pontine gliomas (DIPGs) to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods: We used single nucleotide polymorphism arrays to evaluate genomic copy number imbalances in 43 DIPGs from 40 patients and in 8 low-grade exophytic brainstem gliomas. Gene expression arrays were used to evaluate expression signatures from 27 DIPGs, 6 low-grade exophytic brainstem gliomas and 66 low-grade gliomas arising outside the brainstem. Results: Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and pediatric glioblastomas outside the brainstem. Focal amplifications of genes within the receptor tyrosine kinase-Ras-PI3-kinase signaling pathway were found in 47% of DIPG, with PDGFRA and MET showing the highest frequency. 30% of DIPG contained focal amplifications of cell-cycle regulatory genes controlling RB phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures relating to developmental processes compared to pediatric glioblastomas arising outside the brainstem, while expression signatures of low-grade exophytic brainstem gliomas were similar to low-grade gliomas outside the brainstem. Copy number analaysis: 43 DIPG samples, 8 Low Grade Gliomas using SNP6.0. Available matched normals are also profiled with SNP6.0. Expression analysis: 29 DIPG samples, 6 Low grade samples Please contact Suzanne Baker at Suzanne.Baker@stjude.org for CEL files and genotype calls.
Project description:Purpose: More than 90% of children with diffuse intrinsic pontine glioma (DIPG) die within 2 years of diagnosis. There is a dire need to identify therapeutic targets, however lack of patient material for research has limited progress. We evaluated a large cohort of diffuse intrinsic pontine gliomas (DIPGs) to identify recurrent genomic abnormalities and gene expression signatures underlying DIPG. Patients and Methods: We used single nucleotide polymorphism arrays to evaluate genomic copy number imbalances in 43 DIPGs from 40 patients and in 8 low-grade exophytic brainstem gliomas. Gene expression arrays were used to evaluate expression signatures from 27 DIPGs, 6 low-grade exophytic brainstem gliomas and 66 low-grade gliomas arising outside the brainstem. Results: Frequencies of specific large-scale and focal imbalances varied significantly between DIPGs and pediatric glioblastomas outside the brainstem. Focal amplifications of genes within the receptor tyrosine kinase-Ras-PI3-kinase signaling pathway were found in 47% of DIPG, with PDGFRA and MET showing the highest frequency. 30% of DIPG contained focal amplifications of cell-cycle regulatory genes controlling RB phosphorylation, and 21% had concurrent amplification of genes from both pathways. Some tumors showed heterogeneity in amplification patterns. DIPGs showed distinct gene expression signatures relating to developmental processes compared to pediatric glioblastomas arising outside the brainstem, while expression signatures of low-grade exophytic brainstem gliomas were similar to low-grade gliomas outside the brainstem.
Project description:This phase I trial studies the side effects and best dose of pembrolizumab and to see how well it works in treating younger patients with high-grade gliomas (brain tumors that are generally expected to be fast growing and aggressive), diffuse intrinsic pontine gliomas (brain stem tumors), brain tumors with a high number of genetic mutations, ependymoma or medulloblastoma that have come back (recurrent), progressed, or have not responded to previous treatment (refractory). Immunotherapy with monoclonal antibodies, such as pembrolizumab, may induce changes in the body’s immune system, and may interfere with the ability of tumor cells to grow and spread.
Project description:Genome-wide DNA methylation profiling of 10 pediatric bithalamic diffuse gliomas. The Illumina Infiunium 450k Human DNA Methylation Beadchip (n=4) or the Infinium EPIC 850k Human DNA Methylation Beadchip (n=6) was used to obtain DNA methylation profiles across approximately 450,000 or 850,000 CpG sites of genomic DNA extracted from formalin-fixed, paraffin-embedded tumor tissue of 10 pediatric bithalamic diffuse gliomas.
Project description:Diffuse midline glioma (DMG) identifies gliomas originating in the thalami, brainstem, cerebellum and spine. Within this entity, tumours that infiltrate the pons, called diffuse intrinsic pontine gliomas (DIPGs), have a rapid onset and devastating neurological symptoms. Radiotherapy is the only intervention that is able to modify the disease course, albeit not in a curative way. In recent years, liquid biopsies have represented the next step in clinical diagnostics due to their easily accessible nature. The purpose of this study is to profile circulating miRNA expression to disclose a potential prognostic signature with clinical impact.
Project description:We have used Illumina Infinium HumanMethylation450 BeadChip array profiling to profile paediatric high grade gliomas and diffuse intrinsic pontine gliomas. The 450K methylation array is being used to separate brain tumour samples on the basis of their methylation profiles which represent the cell of origin the time and place in which tumours arise. Methylation arrays provide data for an integrated molecular diagnosis of brain tumours and define specific molecular subgroups and subtypes of high grade gliomas carrying distinct driver mutations and patterns of somatic alterations. These data form part of an integrated meta-analysis of high grade gliomas in children combining DNA copy number, methylation and high throughput sequencing datasets.
Project description:Pediatric low-grade gliomas (PLGGs) are among the most common solid tumors in children but apart from BRAF mutations or duplications in specific subclasses, few genetic driver events are known. Diffuse PLGGs comprise a set of uncommon subtypes that exhibit invasive growth and are therefore especially challenging clinically. These tumors are particularly poorly understood. We performed high-resolution copy-number analysis of 44 diffuse PLGGs to identify recurrent alterations. Diffuse PLGGs exhibited fewer such alterations than adult low-grade gliomas, but we identified several significantly recurrent events. The most significant event, 8q13.1 gains, were observed in 28% of diffuse astrocytomas grade II (DA2s) and resulted in partial duplication of the transcription factor MYBL1 with truncation of its C-terminal negative-regulatory domain. A similar recurrent deletion-truncation breakpoint was identified in two angiocentric gliomas in the related gene MYB on 6q23.3. Whole-genome sequencing of a MYBL1-rearranged DA2 demonstrated MYBL1 tandem duplication, and few other events. Two novel, truncated MYBL1 transcripts identified in this tumor induced anchorage-independent growth when expressed in 3T3 cells and tumor formation in nude mice. Truncated transcripts were also expressed in two additional tumors with MYBL1 partial duplication. Our results define clinically relevant molecular subclasses of diffuse PLGGs and highlight a potential role for the MYB family in the biology of low-grade gliomas.