Project description:we performed infrared crosslinking immunoprecipitation followed by sequencing (irCLIP-seq) (Zarnegar et al., 2016) for Rbm15 to directly map its binding sites on RNA. As a principle of concept, the cells were engineered to simultaneously express emGFP-Rbm15 and Xist RNA together, as Rbm15 strongly interacts with Xist A-repeat to deposit the m6A methylation downstream. Cross-linking induced truncation site (CITS or RT stops) is the main signature occurring at our irCLIP-seq datasets. RNA meta-profile plot against normalized transcripts shows that these CITSs reside across the transcript, with 2 main peaks in transcript starts and near the stop-codon regions, in agreement with the RBM15/15B binding profile in human cells (Patil et al., 2016).Motif analysis against CITSs revealed that Rbm15 binding sites prefer U-rich stretches, namely 3 or 4 consecutive Us. This is also true for crosslinking induced mutations (CIMS).
Project description:This SuperSeries is composed of the following subset Series: GSE36958: Gene expression profiles of WT and ime4-/- mutant yeast cells, under vegetative and meiosis-inducing conditions GSE37001: METTL3 KD in HepG2 cells GSE37002: m6A mapping in human RNA (with treatments) GSE37003: m6A mapping in human RNA (untreated) GSE37004: m6A mapping in mouse RNA (mouse liver and human brain) Refer to individual Series
Project description:We developed a novel approach, m6A-seq, for high-resolution mapping of the transcriptome-wide m6A landscape, based on antibody-mediated capture followed by massively parallel sequencing Identification of m6A modified sequences in mouse liver and human brain
Project description:GP61-primed effector CD4+ T cells were isolated from Ctrl or Mettl3-deficient SMARTA mice. Total RNAs were extracted with TRIzol reagent, and mRNAs were then isolated with Dynabeads® mRNA purification kit, followed by stardard m6A-miCLIP-SMARTer-seq with some modifications. Raw sequencing reads were aligned to the mouse genome (mm10) with BWA, and then m6A sites were determined.
Project description:Here we determine the map of RNA methylation (m6A) in mouse embrionic stem cells, and Mettl3 knock out cells Examination of m6A modification sites on the transcriptome of mouse Embryonic stem cells and Embryonic Mettl3 knock out cells, using a m6A specific antibody.