Project description:The precise mechanism and effects of antibiotics in host gene expression and immunomodulation in MRSA infection is unknown. Using a well characterized Methicillin Resistant Staphylococcus aureus (MRSA) isolate USA300 in a murine model of infection, we determined that linezolid and vancomycin induced differential production of bacterial toxins and host cytokines, differences in host gene expression, and differences in immunomodulators during MRSA bloodstream infection. A total of 35 A/J mice, categorized into seven groups (no infection; no infection with linezolid; no infection with vancomycin; 2 hour post-infection (hpi) S. aureus; 24 hpi S. aureus; 24 hpi S. aureus with linezolid; and 24 hpi S. aureus with vancomycin), were used in this study. Mice were injected with USA300 (6 x 106 CFU/g via i.p. route), then intravenously treated with linezolid (25 mg/kg) or vancomycin (25 mg/kg) at 2 hpi. Control and S. aureus infected mice were euthanized at each time point (2 h or 24h) following injection. Whole blood RNA was used for microarray; three cytokines and two S. aureus toxins [PantonValentine Leukocidin (PVL) and alpha hemolysin] were quantified in mouse serum by ELISA. S. aureus CFUs were significantly reduced in blood and kidney after linezolid or vancomycin treatment in S. aureus-infected mice. In vivo IL-1M-NM-2 in mouse serum was significantly reduced in both linezolid (p=0.001) and vancomycin (p=0.006) treated mice compared to untreated ones. IL-6 was significantly reduced only in linezolid treated (p<0.001) but not in vancomycin treated mice. However, another proinflammatory cytokine, TNF-M-NM-1, did not exhibit altered levels in either linezolid or vancomycin treated mice (p=0.3 and p=0.51 respectively). In vivo level of bacterial toxin, Panton-Valentine leukocidin, in mouse serum was significantly reduced only in linezolid treated mice (p=0.02) but not in vancomycin treated mice. There was no significant effect of either treatment in in vivo level of alpha hemolysin production. Unsupervised hierarchical clustering using the gene expression data from 35 microarrays revealed distinct clustering based on infection status and treatment group. Study of the antibiotic-specific difference in gene expression identified the number of genes uniquely expressed in response to S. aureus infection, infection with linezolid treatment, and infection with vancomycin treatment. Pathway associations study for the differentially expressed genes in each comparison group (Control vs. 24 h S. aureus infection, 24 h S. aureus infection vs. 24 h S. aureus linezolid, and 24 h S. aureus infection vs. 24 h S. aureus vancomycin) in mice using Kyoto Encyclopedia of Genes and Genomes (KEGG) identified toll-like receptor signaling pathway to be common to every comparison groups studied. Glycerolipid metabolism pathway was uniquely associated only with linezolid treatment comparison group. The findings of this study provide the evidence that protein synthesis inhibitor like linezolid does a better job in treating MRSA sepsis compared to cell wall acting antibiotics like vancomycin. To identify differences in host gene expression in a murine sepsis model treated with a) linezolid and b) vancomycin, we used whole blood gene expression (RNA) signatures from A/J inbred mice infected with USA 300 MRSA to evaluate differences in host gene expression among mice treated with linezolid and vancomycin. We used 5 RNA samples from MRSA-infected, linezolid- or vancomycin-treated mice. A total of 7 experimental groups have been employed: 1) Uninfected control group: (negative controls). 2) Uninfected, linezolid-treated group: Uninfected, linezolid-treated mice. 3) Uninfected vancomycin-treated group: Uninfected, vancomycin-treated mice. 4) Infected control group (positive control 2 h) MRSA-infected, untreated mice. 5) Infected control group (positive control 24 h): MRSA-infected, untreated mice. 6) Infected linezolid group: MRSA-infected, linezolid-treated mice. 7) Infected vancomycin group: MRSA-infected, vancomycin-treated mice.
Project description:The study aims to identify genes associated with Linezolid resistance. Linezolid resistant strains were compared to a Linezolid sensitive reference strain in the presence of linezolid and absence of linezolid (mock).
Project description:The precise mechanism and effects of antibiotics in host gene expression and immunomodulation in MRSA infection is unknown. Using a well characterized Methicillin Resistant Staphylococcus aureus (MRSA) isolate USA300 in a murine model of infection, we determined that linezolid and vancomycin induced differential production of bacterial toxins and host cytokines, differences in host gene expression, and differences in immunomodulators during MRSA bloodstream infection. A total of 35 A/J mice, categorized into seven groups (no infection; no infection with linezolid; no infection with vancomycin; 2 hour post-infection (hpi) S. aureus; 24 hpi S. aureus; 24 hpi S. aureus with linezolid; and 24 hpi S. aureus with vancomycin), were used in this study. Mice were injected with USA300 (6 x 106 CFU/g via i.p. route), then intravenously treated with linezolid (25 mg/kg) or vancomycin (25 mg/kg) at 2 hpi. Control and S. aureus infected mice were euthanized at each time point (2 h or 24h) following injection. Whole blood RNA was used for microarray; three cytokines and two S. aureus toxins [PantonValentine Leukocidin (PVL) and alpha hemolysin] were quantified in mouse serum by ELISA. S. aureus CFUs were significantly reduced in blood and kidney after linezolid or vancomycin treatment in S. aureus-infected mice. In vivo IL-1β in mouse serum was significantly reduced in both linezolid (p=0.001) and vancomycin (p=0.006) treated mice compared to untreated ones. IL-6 was significantly reduced only in linezolid treated (p<0.001) but not in vancomycin treated mice. However, another proinflammatory cytokine, TNF-α, did not exhibit altered levels in either linezolid or vancomycin treated mice (p=0.3 and p=0.51 respectively). In vivo level of bacterial toxin, Panton-Valentine leukocidin, in mouse serum was significantly reduced only in linezolid treated mice (p=0.02) but not in vancomycin treated mice. There was no significant effect of either treatment in in vivo level of alpha hemolysin production. Unsupervised hierarchical clustering using the gene expression data from 35 microarrays revealed distinct clustering based on infection status and treatment group. Study of the antibiotic-specific difference in gene expression identified the number of genes uniquely expressed in response to S. aureus infection, infection with linezolid treatment, and infection with vancomycin treatment. Pathway associations study for the differentially expressed genes in each comparison group (Control vs. 24 h S. aureus infection, 24 h S. aureus infection vs. 24 h S. aureus linezolid, and 24 h S. aureus infection vs. 24 h S. aureus vancomycin) in mice using Kyoto Encyclopedia of Genes and Genomes (KEGG) identified toll-like receptor signaling pathway to be common to every comparison groups studied. Glycerolipid metabolism pathway was uniquely associated only with linezolid treatment comparison group. The findings of this study provide the evidence that protein synthesis inhibitor like linezolid does a better job in treating MRSA sepsis compared to cell wall acting antibiotics like vancomycin.
2014-06-05 | GSE38531 | GEO
Project description:Tedizolid/Linezolid (Oxazolidinones) Resistant Staphylococci Genome sequencing and assembly
Project description:Staphylococci are major pathogens in humans and animals and emerging antibiotic-resistant strains have further increased the importance of this health issue. The existence of a genetic basis of host response to bacterial infections has been widely documented but the underlying mechanisms and genes are still largely unknown. Previously, two divergent lines of sheep selected on their milk somatic cell count called high and low SCS lines, have been showed to be respectively more and less susceptible to intra mammary infections (IMI). Transcriptional profiling of milk somatic cells (MSC) of high and low SCS sheep infected successively by S. epidermidis and S. aureus was performed to provide enhanced knowledge about the genetic basis of differential host response to IMI with Staphylococci. Gene expression in MSC of high and low SCS sheep collected 12h post-challenge was performed on a 15K gene ovine oligoarray (Agilent). MSC were mainly neutrophils. The high number of differentially expressed genes between the two bacterial strains indicated, among others, increased number of T-cells in MSC after S. aureus, compared to S. epidermidis challenge. Differential regulation of 366 genes between resistant and susceptible animals was largely associated with immune and inflammatory response (including pathogen recognition TLR2 pathway and cell migration), signal transduction, cell proliferation and apoptosis. Close biological connection between most of differentially expressed genes into Ingenuity Pathway Analysis networks further indicated consistency between the genes that were differentially-expressed between resistant and susceptible animals. Gene profiling in high and low SCS sheep provided strong candidates for biological pathway and gene underlying genetically determined resistance and susceptibility towards Staphylococci infections opening new fields for further investigation. Keywords: Staphylococcus epidermidis, Staphylococcus aureus, milk somatic cells, mammalian, transcriptome, immunity, mastitis 22 samples in a two-colour dye-swap experimental design