Project description:We illustrate how metabolically distinct species of Clostridia can protect against or worsen Clostridioides difficile infection, modulating the pathogen's colonization, growth, and virulence to impact host survival. Gnotobiotic mice colonized with the amino acid fermenter Paraclostridium bifermentans survived infection while mice colonized with the butyrate-producer, Clostridium sardiniense, more rapidly succumbed. Systematic in vivo analyses revealed how each commensal altered the gut nutrient environment, modulating the pathogen's metabolism, regulatory networks, and toxin production. Oral administration of P. bifermentans rescued conventional mice from lethal C. difficile infection via mechanisms identified in specifically colonized mice. Our findings lay the foundation for mechanistically informed therapies to counter C. difficile disease using systems biologic approaches to define host-commensal-pathogen interactions in vivo.
Project description:The Gram-positive bacterium Clostridium difficile, a leading cause of antibiotic-associated pseudomembranous colitis, has received increasing attention due to a rising incidence of clinical C. difficile infections (CDI). Despite progress understanding bacterial factors that promote CDI-associated morbidity and mortality, many fundamental aspects of C. difficile biology remain to be explored. Compared to other Gram-positive pathogens, little is known about the bacterium’s transcriptome architecture and in particular mechanisms of post-transcriptional control. To close this knowledge gap, we have applied a suite of transcriptome-focused techniques, including transcription start site mapping (dRNA-seq), transcription termination mapping, and Hfq RIP-seq, resulting in a single-nucleotide resolution RNA map of C. difficile strain 630.
Project description:Clostridioides difficile can cause severe infections in the gastrointestinal tract and affects almost half a million people in the U.S every year. Upon establishment of infection, a strong immune response is induced. We sought to investigate the dynamics of the mucosal host response during C. difficile infection.
Project description:Clostridioides difficile is one of the most common nosocomial pathogens and a global public health threat. Upon colonization of the gastrointestinal tract, C. difficile is exposed to a rapidly changing polymicrobial environment and a dynamic metabolic milieu. Despite the link between the gut microbiota and susceptibility to C. difficile, the impact of synergistic interactions between the microbiota and pathogens on the outcome of infection is largely unknown. Here, we show that microbial cooperation between C. difficile and Enterococcus has a profound impact on the growth, metabolism, and pathogenesis of C. difficile.. Through a process of nutrient restriction and metabolite cross-feeding, E. faecalis shapes the metabolic environment in the gut to enhance C. difficile fitness and increase toxin production. These findings demonstrate that members of the microbiota, such as Enterococcus, have a previously unappreciated impact on C. difficile behavior and virulence.
Project description:The intestines house a diverse microbiota that must compete for nutrients to survive, but the specific limiting nutrients that control pathogen colonization are not clearly defined. Clostridioides difficile colonization typically requires prior disruption of the microbiota, suggesting that outcompeting commensals for resources is key in establishing C. difficile infection (CDI). The immune protein calprotectin (CP) is released into the gut lumen during CDI to chelate zinc (Zn) and other essential nutrient metals. Yet, the impact of Zn limitation on C. difficile colonization is unknown. To define C. difficile responses to Zn limitation, we performed RNA sequencing on C. difficile exposed to CP. In media with CP, C. difficile upregulated genes involved in metal homeostasis and amino acid metabolism.
Project description:Clostridioides difficile (formerly Clostridium difficile) colonizes the gastrointestinal tract following disruption of the microbiota and can initiate a spectrum of clinical manifestations ranging from asymptomatic to life-threatening colitis. Following antibiotic treatment, luminal oxygen concentrations increase, exposing gut microbes to potentially toxic reactive oxygen species (ROS). Though typically regarded as a strict anaerobe, C. difficile can grow at low oxygen concentrations. How the bacterium adapts to a microaerobic environment and whether those responses to oxygen are conserved amongst strains is not entirely understood. Here, two C. difficile strains (630 and CD196) were cultured in 1.5% oxygen and the transcriptional response was evaluated via RNA-sequencing. During growth in a microaerobic environment, several genes predicted to protect against oxidative stress were upregulated, including ruberythrins and rubredoxins. Genes involved in metal homeostasis were positively correlated with increasing oxygen levels and were also amongst the most differentially transcribed. These included ferrous iron transporters (feo), a zinc transporter (zupT), and predicted siderophore transporters. To directly compare the transcriptional landscape between C. difficile strains, a ‘consensus-genome’ was generated. On the basis of the identified conserved genes, basal transcriptional differences as well as variations in the response to oxygen were evaluated. While several responses were similar between the strains, there were significant differences in the abundance of transcripts for amino acid and carbohydrate metabolism. Furthermore, homologous metal homeostasis genes were similarly transcribed, but the intracellular metal concentrations significantly varied both in an oxygen-dependent and independent manner. Overall, these results indicate that C. difficile adapts to grow in a low oxygen environment through transcriptional changes, though the specific strategy employed varies between strains.
Project description:C. difficile infections have become a major challenge in medical facilities today. The bacterium is capable of spore formation, which even allows survival of antibiotic treatment. Therefore, research on the physiology of C. difficile is important for the development of alternative treatment strategies. In this study, we investigated eight putative flavodoxins of C. difficile 630. Flavodoxins are small electron transfer proteins of specifically low potential. The unusually high number of flavodoxins in C. difficile compared to other bacteria suggests that they are expressed under different conditions. Therefore, we investigated expression along bacterial growth and found high transcription levels during the exponential growth phase, especially for floX. Since flavodoxins in other bacteria are capable of replacing ferredoxins with their [2Fe-2S] clusters under iron deficiency conditions, we also examined flavodoxin expression in C. difficile under low iron and no iron levels.
Project description:Gene expression level of Clostridioides difficile (C. difficile) strain R20291 comparing control C. difficile carring pMTL84151 as vector plasmid with C. difficile conjugated with a pMTL84151-03890 gene. Goal was to determine the effects of 03890 gene conjugation on C. difficile strain R20291 gene expression.
Project description:Toxin A and B from Clostridium difficile are the primary virulence factors in Clostridium difficile disease. The changes in gene transcription of human colon epithelial cells were investigated in vitro in order to better understand the many effects of both toxins.