Project description:When several polyphagous herbivore species share a parasitoid, the tri-trophic interaction networks can be difficult to predict. In addition to direct effects, the parasitoid may influence the herbivore community by mediating indirect interactions among hosts. The plant species can also modulate the parasitoid preference for a specific host. One of the indirect effects is apparent competition, a negative interaction between individuals as a result of the action of shared natural enemies. Here, we focus on the interactions between the parasitoid Fopius arisanus (Braconidae) and two generalist fruit fly pests: Bactrocera dorsalis and Bactrocera zonata (Tephritidae). This parasitoid was introduced into La Réunion in 2003 to control populations of B. zonata and can also interact with B. dorsalis since its invasion in 2017. Our main objective is to characterize the tri-trophic interactions between F. arisanus, fruit fly and host plant species. We developed a long-term field database of fruit collected before and after the parasitoid introduction and after the B. dorsalis invasion in order to compare parasitism rate and fruit fly infestation for the different periods. In laboratory assays, we investigated how the combination of fruit fly species and fruit can influence the preference of F. arisanus. In the field, before the invasion of B. dorsalis, the parasitism rate of F. arisanus was low and had a little impact on the fruit fly infestation rate. After the B. dorsalis invasion, we observed an increase in parasitism rate from 5% to 17%. A bioassay showed that females of F. arisanus could discriminate between eggs of different fruit fly and host plant species. The host plant species preference changed in relation to the fruit fly species inoculated. Field observations and laboratory experiments suggest the possible existence of apparent competition between B. dorsalis and B. zonata via F. arisanus.
Project description:BackgroundThe Braconid wasp Fopius arisanus (Sonan) has been utilized for biological control of the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis), both of which are phytophagous fruit fly pests of economic importance in many tropical and subtropical regions of the world. We have sequenced and assembled the transcriptome of this wasp using tissue from four different life stages: larvae, pupae, adult males and adult females, with the aim to contribute foundational resources to aid in the understanding of the biology and behavior of this important parasitoid.FindingsThe transcriptome of the parasitic wasp Fopius arisanus was sequenced and reconstructed using a strategy that identified 15,346 high confidence, non-redundant transcripts derived from 8,307 predicted unigenes. In addition, Pfam domain annotations were detected in 78 % of these transcripts. The distribution of transcript length is comparable to that found in other hymenoptera genomes. Through orthology analysis, 7,154 transcripts were identified as having orthologs in at least one of the four other hymenopteran parasitoid species examined. Approximately 4,000 core orthologs were found to be shared between F. arisanus and all four of the other parasitoids.ConclusionsAvailability of high quality genomic data is fundamental for the improvement and advancement of research in any biological organism. Parasitic wasps are important in the biological control of agricultural pests. The transcriptome data presented here represent the first large-scale molecular resource for this species, or any closely related Opiine species. The assembly is available in NCBI for use by the scientific community, with supporting data available in GigaDB.
Project description:The braconid wasp Fopius arisanus (Sonan) is an important biological control agent of tropical and subtropical pest fruit flies, including two important global pests, the Mediterranean fruit fly (Ceratitis capitata), and the oriental fruit fly (Bactrocera dorsalis). The goal of this study was to develop foundational genomic resources for this species to provide tools that can be used to answer questions exploring the multitrophic interactions between the host and parasitoid in this important research system. Here, we present a whole genome assembly of F. arisanus, derived from a pool of haploid offspring from a single unmated female. The genome is ?154 Mb in size, with a N50 contig and scaffold size of 51,867 bp and 0.98 Mb, respectively. Utilizing existing RNA-Seq data for this species, as well as publicly available peptide sequences from related Hymenoptera, a high quality gene annotation set, which includes 10,991 protein coding genes, was generated. Prior to this assembly submission, no RefSeq proteins were present for this species. Parasitic wasps play an important role in a diverse ecosystem as well as a role in biological control of agricultural pests. This whole genome assembly and annotation data represents the first genome-scale assembly for this species or any closely related Opiine, and are publicly available in the National Center for Biotechnology Information Genome and RefSeq databases, providing a much needed genomic resource for this hymenopteran group.
Project description:Fopius arisanus is a solitary endoparasitoid that parasitizes a variety of tephritid species. Native to the Indo-Australian region, it is currently exploited worldwide as a biological control agent due to its exceptional efficiency in reducing pest populations. The efficiency of any biological control program is affected by the host location ability of the parasitoids. The present study used a Y-tube olfactometer to test the behavioural responses of female F. arisanus to four fruit species which had undergone different types of damages: undamaged, damaged through Bactrocera dorsalis ovipositioning (i.e., infested), or different levels of mechanical damage. Our results suggest that F. arisanus females were significantly attracted to mangoes and pears (vs. purified air), regardless of their condition; however, whilst infested mangoes did not attract more female parasitoids compared to healthy or mechanically damaged fruits, infested pears attracted significantly more. For citrus fruits and peaches, oviposition damage caused them to be more attractive to parasitoid females. In terms of the longevity of the effects, infested mango fruits remained attractive for up to 5 days after infestation, whereas for infested peaches, pears, and citrus fruits, the attractiveness tended to decrease as time passed. Regarding mechanical damage, mango fruits that had undergone any intensity of damage were equally attractive to parasitoid females; however, peach and citrus fruits with high levels of mechanical damage were more attractive, and pears were found to be most attractive with slight mechanical damage. Additional to the above, we also tested the effect of insecticides on behavioural responses using mangoes. We found that the treatment of infested fruits with lambda-cyhalothrin and cypermethrin remained attractive to F. arisanus females, albeit to different extents, which is in contrast to spinosad, cyantraniliprole, and acetamiprid. Finally, we suggest that the host-searching behaviour of F. arisanus females is mainly mediated by oviposition-induced volatiles, either emitted from the fruit or left by the fruit fly.