Project description:Investigation of whole genome gene expression level changes in a Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain render it incapable of methylating its genome on the adenine at GANTC motifs. References for strains : WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. DccrM: Gonzalez, D. and Collier, J. (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol, 88, 203-218.
Project description:Investigation of whole genome gene expression level changes in a Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain render it incapable of methylating its genome on the adenine at GANTC motifs. References for strains : WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. DccrM: Gonzalez, D. and Collier, J. (2013) DNA methylation by CcrM activates the transcription of two genes required for the division of Caulobacter crescentus. Mol Microbiol, 88, 203-218. A six chip study using total RNA recovered from three separate wild-type cultures of Caulobacter crescentus NA1000 and three separate cultures of a triple mutant strain, Caulobacter crescentus NA1000 delta-CCNA_00382 (ccrM), in which the ccrM gene coding for a DNA methyltransferase methylating the adenine in GANTC motifs is truncated and its product inactive. Each chip measures the expression level of 3933 genes from Caulobacter crescentus NA1000 with 3 probes per gene and with three-fold technical redundancy.
Project description:Objective: Aspergillus flavus aflR, a gene encoding a Zn(II)2Cys6 DNA-binding domain, is an important transcriptional regulator of the aflatoxin biosynthesis gene cluster. Our previous results of GO analysis for the binding sites of AflR in A. flavus suggest that AflR may play an integrative regulatory role. This study aimed to investigate the integrative function of the aflR gene in A. flavus. Design: In this study, we used Aspergillus flavus NRRL3357 as a wild-type strain (WT) and constructed a knockout strain of A. flavus ΔaflR by homologous recombination. Based on the transcriptomics technology, we investigated the metabolic effects of aflR gene on growth, development and toxin synthesis of A. flavus, and discussed the overall regulation mechanism of aflR gene on A. flavus at the transcriptional level. Results: The disruption of aflR severely affected the aflatoxin biosynthetic pathway, resulting in a significant decrease in aflatoxin production. In addition, disrupted strains of the aflR gene produced relatively sparse conidia and a very small number of sclerotia. However, the biosynthesis of cyclopiazonic acid (CPA) was not affected by aflR gene disruption. Transcriptomic analysis of the ΔaflR strain grown on potato dextrose agar (PDA) plates at 0 h, 24 h, and 72 h showed that expression of clustering genes involved in the biosynthesis of aflatoxin was significantly down-regulated. Meanwhile, the ΔaflR strain showed significant expression differences in genes involved in spore germination, sclerotial development, and carbohydrate metabolism compared to the WT strain. Conclusions: The results showed that the A. flavus aflR gene also played a positive role in the growth and development of fungi.
Project description:Investigation of whole genome gene expression level changes in a Caulonacter crescentus NA1000 Plac::CCNA_00382 (ccrM) mutant, compared to the wild-type strain. The mutations engineered into this strain cause the CcrM DNA methyltransferase to be overexpressed and the chromosome to be constitutively methylated at the adenine at GANTC motifs. References of strains: CcrMOE: Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716. WT: Marks, M.E., Castro-Rojas, C.M., Teiling, C., Du, L., Kapatral, V., Walunas, T.L. and Crosson, S. (2010) The genetic basis of laboratory adaptation in Caulobacter crescentus. J Bacteriol, 192, 3678-3688; Collier, J. and Shapiro, L. (2009) Feedback control of DnaA-mediated replication initiation by replisome-associated HdaA protein in Caulobacter. J Bacteriol, 191, 5706-5716.
Project description:RNA-seq was used to compare differential gene expressions for Aspergillus flavus wild type strain and ASPES transcription factor deletion strains.The goals of this study are to explore the aflatoxin regulation pathway in A. flavus.