Project description:Analysis of gene expression patterns in enlarged left atrial appendage (LAA) in mitral/aortic valve replacement or coronary artery bypass graft surgery can help to identify a comprehensive panel of gene biomarkers for predicting clinical outcomes and to discover potential new therapeutic targets. However, the transcriptional profiles triggered by extended mechanical stretch in cardiac myocytes are not fully understood. Here we performed the first genome-wide study of gene expression changes in human enlarged left atium, resulting in 335 differentially expressed (> 2-fold, P < 0,05) genes in response to mechanical stretch.
Project description:The goal of this study was to examine the effect of the major axis of biaxial mechanical stretch on cardiac myocyte gene expression and to identify the signaling pathways and transcription factors regulating these changes. Neonatal cardiac myocytes were cultured on a micropatterned substrate, and the primary stretch axis was applied either parallel or transverse to the myofibril direction. RNA sequencing was conducted to study whole genomic expression changes after acute cardiac myocyte stretch. The results showed a more robust gene response to longitudinal than to transverse stretch. After 30 minutes of stretch, 53 and 168 genes were considered differentially expressed (DE) from transverse and longitudinal stretch, respectively. After 4 hours, the number of DE genes increased to 795 in longitudinal stretch while it decreased to 35 in transverse stretch. Gene ontology term (GO) analysis indicated enrichment of TF activity and protein kinase activity by both stretch axes; whereas longitudinal but not transverse stretch caused expression of genes involved in sarcomere organization and cytoskeletal protein binding.
Project description:Myocardial damage caused for example by cardiac ischemia leads to ventricular volume overload resulting in increased stretch of the remaining myocardium. In adult mammals, these changes trigger an adaptive cardiomyocyte hypertrophic response which, if the damage is extensive, will ultimately lead to pathological hypertrophy and heart failure. Conversely, in response to extensive myocardial damage, cardiomyocytes in the adult zebrafish heart and neonatal mice proliferate and completely regenerate the damaged myocardium. We therefore hypothesized that in adult zebrafish, changes in mechanical loading due to myocardial damage may act as a trigger to induce cardiac regeneration. Based, on this notion we sought to identify mechanosensors which could be involved in detecting changes in mechanical loading and triggering regeneration. Here we show using a combination of knockout animals, RNAseq and in vitro assays that the mechanosensitive ion channel Trpc6a is required by cardiomyocytes for successful cardiac regeneration in adult zebrafish. Furthermore, using a cyclic cell stretch assay, we have determined that Trpc6a induces the expression of components of the AP1 transcription complex in response to mechanical stretch. Our data highlights how changes in mechanical forces due to myocardial damage can be detected by mechanosensors which in turn can trigger cardiac regeneration.
Project description:Mechanical forces are able to activate hypertrophic growth of cardiomyocytes in the overloaded myocardium. However, the transcriptional profiles triggered by mechanical stretch in cardiac myocytes are not fully understood. Here, we performed the first genome-wide time series study of gene expression changes in stretched cultured neonatal rat ventricular myocytes (NRVM)s, resulting in 205, 579, 737, 621, and 1542 differentially expressed (>2-fold, P < 0.05) genes in response to 1, 4, 12, 24, and 48 hours of cyclic mechanical stretch. We used Ingenuity Pathway Analysis to predict functional pathways and upstream regulators of differentially expressed genes in order to identify regulatory networks that may lead to mechanical stretch induced hypertrophic growth of cardiomyocytes. We also performed micro (miRNA) expression profiling of stretched NRVMs, and identified that a total of 8 and 87 miRNAs were significantly (P < 0.05) altered by 1-12 and 24-48 hours of mechanical stretch, respectively. Finally, through integration of miRNA and mRNA data, we predicted the miRNAs that regulate mRNAs potentially leading to the hypertrophic growth induced by mechanical stretch. These analyses predicted nuclear factor-like 2 (Nrf2) and interferon regulatory transcription factors as well as the let-7 family of miRNAs as playing roles in the regulation of stretch-regulated genes in cardiomyocytes.