Project description:Ribosome small subunit (SSU) is assembled by the SSU processome which contains approximately 70 non-ribosomal protein factors. The biochemical mechanism for the SSU processome in 18S rRNA processing and maturation has been extensively studied, however, how the SSU processome components enter to the nucleolus has not been systematically investigated. Here we checked the nucleolar localization of 50 human SSU processome components and find that UTP3 and other 24 proteins enter to the nucleolus autonomously. For the remaining 25 proteins we find that UTP3/SAS10 assists the nucleolar localization of five proteins, namely MPP10, UTP25, EMG1 and two UTP-B components UTP12 and UTP13, and this ferry function of UTP3 is conserved in zebrafish. We also find that knockdown of human UTP3 impairs the cleavage at A0-site while loss-of-function of either utp3/sas10 or utp13/tbl3 in zebrafish causes an accumulation of the processed products containing the 5′ETS, supporting the crucial role of UTP3 in mediating the 5′ETS processing and degradation. Moreover, UTP3 directly interacts with and delivers EXOSC10 into the nucleolus, suggesting that UTP3 may play a direct role in recruiting the nuclear exosome to the SSU processome for degradation of the processed 5′ETS. These findings lay the ground for studying the mechanism of cytoplasm-to-nucleolus trafficking of the SSU processome components and the multifaceted roles of UTP3 during pre-rRNA processing.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction
Project description:We investigated a contaminant-degrading microbial community by sequencing total RNA (without rRNA depletion) from microcosms containing sediment from a hypoxic contaminated aquifer fed with isotopically labeled toluene.
Project description:Mitoribosomes are essential for synthesis and maintenance of bioenergetic proteins. Here, we use cryoelectron microscopy (cryo-EM) to determine a series of the small mitoribosomal subunit (SSU) intermediates in complex with auxiliary factors, revealing a sequential assembly mechanism. The methyltransferase TFB1M binds to partially unfolded rRNA h45 that is promoted by RBFA, while the mRNA channel is blocked. This enables METTL15 binding that promotes further rRNA maturation and a large conformational change of RBFA. The new conformation allows initiation factor mtIF3 to already occupy the subunit interface during the assembly. Finally, the mitochondria-specific ribosomal protein mS37 outcompetes RBFA to complete the assembly with the SSU:mS37:mtIF3 complex that proceeds towards IF2 binding and translation initiation. Our results explain how the action of step-specific factors modulate the dynamic assembly of the SSU, and adaptation of a unique protein mS37 links the assembly to initiation to establish the catalytic human mitoribosome.
Project description:The SSU Processome (sometimes referred to as 90S) is an early stable intermediate in the small ribosomal subunit biogenesis pathway of eukaryotes. Progression of the SSU Processome to a pre-40S particle requires a large-scale compaction of the RNA and release of many biogenesis factors. The U3 snoRNA is a primary component of the SSU Processome and hybridizes to the rRNA at multiple locations to organize the structure of the SSU Processome. Thus, release of U3 is prerequisite for the transition to pre-40S. Our lab proposed that the RNA helicase Dhr1 plays a crucial role in the transition by unwinding U3 and that this activity is controlled by the SSU Processome protein Utp14. How Utp14 times the activation of Dhr1 is an open question. Despite being highly conserved, Utp14 contains no recognizable domains, and how Utp14 interacts with the SSU Processome is not well characterized. Here, we used UV crosslinking and analysis of cDNA (CRAC) and yeast two-hybrid interaction to characterize how Utp14 interacts with the pre-ribosome. Moreover, proteomic analysis of SSU particles lacking Utp14 revealed that the presence of Utp14 is needed for efficient recruitment of the RNA exosome. Our analysis positions Utp14 to be uniquely poised to communicate the status of assembly of the SSU Processome to Dhr1 and possibly to the exosome as well.
Project description:Ribosome biogenesis, which takes place mainly in the nucleolus, involves coordinated expression of pre-ribosomal RNAs (pre-rRNAs) and ribosomal proteins, pre-rRNA processing, and subunit assembly with the aid of numerous assembly factors. Our previous study showed that the Arabidopsis thaliana protein arginine methyltransferase AtPRMT3 regulates pre-rRNA processing; however, the underlying molecular mechanism remains unknown. Here, we report that AtPRMT3 interacts with Ribosomal Protein S2 (RPS2), facilitating processing of the 90S/Small Subunit (SSU) processome and repressing nucleolar stress. We isolated an intragenic suppressor of atprmt3-2, which rescues the developmental defects of atprmt3-2 while produces a putative truncated AtPRMT3 protein bearing the entire N-terminus but lacking an intact enzymatic activity domain. We further identified RPS2 as an interacting partner of AtPRMT3, and found that loss-of-function rps2a2b mutants were phenotypically reminiscent of atprmt3, showing pleiotropic developmental defects and aberrant pre-rRNA processing. RPS2B binds directly to pre-rRNAs in the nucleus, and such binding is enhanced in atprmt3-2. Consistently, multiple components of the 90S/SSU processome were more enriched by RPS2B in atprmt3-2, which accounts for early pre-rRNA processing defects and results in nucleolar stress. Collectively, our study uncovered a novel mechanism by which AtPRMT3 cooperates with RPS2B to facilitate the dynamic assembly/disassembly of the 90S/SSU processome during ribosome biogenesis and repress nucleolar stress.
Project description:Investigation of the phylogenetic diversity of Acidobacteria taxa using PCR amplicons from positive control 16S rRNA templates and total genomic DNA extracted from soil and a soil clay fraction A ten chip study using PCR amplicons from cloned 16S rRNA genes and from diverse soil 16S rRNAs, with PCR primers specific to the Division Acidobacteria. Each chip measures the signal from 42,194 probes (in triplicate) targeting Acidobacteria division, subdivision, and subclades as well as other bacterial phyla. All samples except one (GSM464591) include 2.5 M betaine in the hybridization buffer. Pair files lost due to a computer crash.