Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in three biomes, including boreal, temperate and tropical area.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to investigate spring microbial functional genes in mesocosm-simulated shallow lake ecosystems having been undergoing nutrient enrichment and warming for nine years.
Project description:Here, we applied a microarray-based metagenomics technology termed GeoChip 5.0 to examined functional gene structure of microbes in four lakes at low and high elevations of approximately 530 and 4,600 m a.s.l., respectively.
Project description:Monitoring microbial communities can aid in understanding the state of these habitats. Environmental DNA (eDNA) techniques provide efficient and comprehensive monitoring by capturing broader diversity. Besides structural profiling, eDNA methods allow the study of functional profiles, encompassing the genes within the microbial community. In this study, three methodologies were compared for functional profiling of microbial communities in estuarine and coastal sites in the Bay of Biscay. The methodologies included inference from 16S metabarcoding data using Tax4Fun, GeoChip microarrays, and shotgun metagenomics.
Project description:Due to its high altitude and extreme climate conditions, the Tibetan plateau is a region vulnerable to the impact of climate changes and anthropogenic perturbation, thus understanding how its microbial communities function may be of high importance. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes and anthropogenic perturbation. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities in treatment site were distinct, compared with those in control site, e.g. shrubland vs grassland, grazing site vs ungrazing site, or warmer site vs colder site. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes.
Project description:Tibet is one of the most threatened regions by climate warming, thus understanding how its microbial communities function may be of high importance for predicting microbial responses to climate changes. Here, we report a study to profile soil microbial structural genes, which infers functional roles of microbial communities, aiming to explore potential microbial responses to climate changes via a strategy of space-for-time substitution. Using a microarray-based metagenomics tool named GeoChip 4.0, we showed that microbial communities were distinct for most but not all of the sites. Substantial variations were apparent in stress, N and C cycling genes, but they were in line with the functional roles of these genes. sixty-three samples were collected from four elevations (3200,3400,3600 and 3800 m) along a Tibetan alpine meadow; Three replicates in each treatment
Project description:Understanding biological diversity and distribution patterns at multiple spatial scales is a central issue in ecology. Here, we investigated the biogeographical patterns of functional genes in soil microbes from 24 arctic heath sites using GeoChip-based metagenomics and principal coordinates of neighbour matrices (PCNM)-based analysis. Functional gene richness varied considerably among sites, while the proportions of each major functional gene category were evenly distributed. Functional gene composition varied significantly at most medium and broad spatial scales, and the PCNM analyses indicated that 14-20% of the variation in total and major functional gene categories could be attributed primarily to relatively broad-scale spatial effects that were consistent with broad-scale variation in soil pH and total nitrogen. The combination of variance partitioning and multi-scales analysis indicated that spatial distance effects contributed 12% to variation in functional gene composition,whereas environmental factors contributed only 3%. This relatively strong influence of spatial as compared to environmental variation in determining functional gene distributions contrasts sharply with typical microbial phylotype/species-based biogeographical patterns in the Arctic and elsewhere. Our results suggest that the distributions of soil functional genes cannot be predicted from phylogenetic distributions because spatial factors associated with historical contingencies are relatively important determinants of their biogeography.