Project description:We analyzed via microarray gene expression profiles from patients with familial pulmonary fibrosis and HPS-1 pulmonary fibrosis collected under IRB-approved protocols.
Project description:The immunome (immune cell phenotype, gene expression, and serum cytokines profiling) in pulmonary fibrosis is incompletely defined. Studies focusing on inherited forms of pulmonary fibrosis provide insights into mechanisms of fibrotic lung disease in general. To define the cellular and molecular immunologic phenotype in peripheral blood, high-dimensional flow cytometry and large-scale gene expression of peripheral blood mononuclear cells and serum proteomic multiplex analyses were performed and compared in a cohort with familial pulmonary fibrosis (FPF), an autosomal dominant disorder with incomplete penetrance; Hermansky-Pudlak syndrome pulmonary fibrosis (HPSPF), a rare autosomal recessive disorder; and their unaffected relatives. Our results showed high peripheral blood concentrations of activated central memory helper cells in patients with FPF. Proportions of CD38+ memory CD27- B-cells, IgA+ memory CD27+ B-cells, IgM+ and IgD+ B-cells, and CD39+ T helper cells were increased whereas those of CD39- T helper cells were reduced in patients affected with either familial or HPSPF. Gene expression and serum proteomic analyses revealed enrichment of upregulated genes associated with mitosis and cell cycle control in circulating mononuclear cells as well as altered levels of several analytes, including leptin, cytokines, and growth factors. In conclusion, dysregulation of the extra-pulmonary immunome is a phenotypic feature of FPF or HPSPF. Further studies investigating the blood immunome are indicated to determine the role of immune system dysregulation in the pathogenesis of pulmonary fibrosis. Clinical Trial Registration:www.ClinicalTrials.gov, identifiers NCT00968084, NCT01200823, NCT00001456, and NCT00084305.
Project description:To investigate the differential genes associated with mitochondria in pulmonary fibrosis mice, we established pulmonary fibrosis mice and applied mitochondrial replenishment therapy.
Project description:Objective: Pulmonary complications in systemic sclerosis (SSc), including pulmonary fibrosis (PF) and pulmonary arterial hypertension (PAH), are the leading cause of mortality. We compared the molecular fingerprint of SSc lung tissues and matching primary lung fibroblasts to those of normal donors, and patients with idiopathic pulmonary fibrosis (IPF) and idiopathic pulmonary arterial hypertension (IPAH). Methods: Lung tissues were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, or IPAH. Microarray data was analyzed using Efficiency Analysis for determination of optimal data processing methods. Real time PCR and immunohistochemistry were used to confirm differential levels of mRNA and protein, respectively. Results: We identified a consensus of 242 and 335 genes that were differentially expressed in lungs and primary fibroblasts, respectively. Enriched function groups in SSc-PF and IPF lungs included fibrosis, insulin-like growth factor signaling and caveolin-mediated endocytosis. Functional groups shared by SSc-PAH and IPAH lungs included antigen presentation, chemokine activity, and IL-17 signaling. Conclusion: Using microarray analysis on carefully phenotyped SSc and comparator lung tissues, we demonstrated distinct molecular profiles in tissues and fibroblasts of patients with SSc-associated lung disease compared to idiopathic forms of lung disease. Unique molecular signatures were generated that are disease- (SSc) and phenotype- (PF vs PAH) specific. These signatures provide new insights into pathogenesis and potential therapeutic targets for SSc lung disease. Lung tissues were obtained from 33 patients with SSc who underwent lung transplantation. Tissues and cells from a subgroup of SSc patients with predominantly PF or PAH were compared to those from normal donors, patients with IPF, or IPAH. Microarray data was analyzed using Efficiency Analysis for determination of optimal data processing methods. Real time PCR and immunohistochemistry were used to confirm differential levels of mRNA and protein, respectively.
Project description:Pulmonary fibrosis (PF) is associated with many chronic lung diseases including Systemic sclerosis (SSc), Idiopathic Pulmonary Fibrosis (IPF) and Cystic Fibrosis (CF) which are characterized by the progressive accumulation of stromal cells and formation of scar tissue. Pulmonary fibrosis is a dysregulated response to alveolar injury which causes a progressive decline in lung function and refractory to current pharmacological therapies. Airway and alveolar epithelial cells and stromal cells contribute to pulmonary fibrosis but the cell-specific pathways and gene networks that are responsible for the pathophysiology are unknown. Recent animals models generated in our lab demonstrate clinical phenotypes seen in human fibrotic disease. The mouse model of transforming growth factor-? (TGF?)-induced fibrosis include conditionally expressing TGF? in the lung epithelium under control of the CCSP promoter driving rtTA expression (CCSP/TGF?). This allow the TGF? is only expressed in airway and alveolar epithelial cells and only when mice fed doxycycline (Dox). Similar to PF in humans, TGF? mice on Dox developed a progressive and extensive adventitial, interstitial and pleural fibrosis with a decline in lung mechanics. Thus, the TGF? transgenic mouse is a powerful model to determine lung cell-specific molecular signatures involved in pulmonary fibrosis. In this study, we sought to determine changes in the transcriptome during TGF?-induced pulmonary fibrosis. Our results showed that several pro-fibrotic genes increased in the lungs of TGF? mice. This study demonstrates that WT1 network gene changes associated with fibrosis and myfibroblast accumulation and thus may serve as a critical regulator fibrotic lung disease. mRNA profiles of CCSP/- and CCSP/TGFalpha mice treated with Dox