Project description:By utilizing a series of specific modulating M2 macrophages polarization models, 1556 up-regulated and 953 down-regulated genes were found during the polarization process.
Project description:By utilizing a series of specific modulating M2 macrophages polarization models, 3872 up-regulated and 3091 down-regulated genes were found during the polarization process.
Project description:In response to microenvironmental signals macrophages undergo different activation, indicated as classic/M1 and alternative/M2 polarization. C-Myc transcription factor could be an essential player in M2 polarization. Functional relevance of c-Myc in M2 macrophage biology is investigated by evaluating the effect of 100-58F4, on the transcriptional profile induced on human macrophages by IL-4. Human monocytes were obtained from normal donor buffy coats by two-step gradient centrifugation using Ficoll (Biochrom) and Percoll (Amersham). Non-adherent cells were discarded, and the purified monocytes were incubated for 7 days in RPMI 1640 (Biochom) supplemented with 10% FCS (HyClone) and 100 ng/mL M-CSF to obtain resting macrophages. Macrophage polarization was obtained by removing the culture medium and culturing cells in RPMI 1640 supplemented with 10% FCS and 100 ng/mL LPS plus 20 ng/mL IFN-gamma (M1 polarization) or 20 ng/mL IL-4 (M2 polarization) for 24 h. When needed, chemical inhibitors were added with IL-4.
Project description:In response to microenvironmental signals macrophages undergo different activation, indicated as classic/M1 and alternative/M2 polarization. C-Myc transcription factor could be an essential player in M2 polarization. Functional relevance of c-Myc in M2 macrophage biology is investigated by evaluating the effect of 100-58F4, on the transcriptional profile induced on human macrophages by IL-4.
Project description:Macrophages polarize towards different subpopulations with distinct and partly antagonistic functions in various diseases. IFNγ/LPS-polarized M1-type macrophages can have antiangiogenic activity, whereas IL-4-induced M2-type macrophages can be proangiogenic and profibrotic. Therapeutic strategies to inhibit M2-type polarization while promoting M1-type polarization could serve to inhibit pathological angiogenesis and fibrosis. Here, by combining global quantitative time-course proteomics and phosphoproteomics with a small-molecule inhibitor screen we identify signaling events that promote specifically IL-4-induced and not IFNγ/LPS-induced macrophage polarization and found that the MEK inhibitor trametinib and the HDAC inhibitor panobinostat potently prevent M2-type macrophage polarization without inhibiting M1-type polarization. In contrast, selective B-Raf inhibition promotes M2-type polarization. Trametinib and panobinostat also blocked M2-type macrophage polarization and concomitantly angiogenesis and fibrosis in models of wound healing and neovascular age-related macular degeneration in vivo. Thus, these pharmacologic inhibitors could be utilized therapeutically to selectively block IL4-induced macrophage polarization and reduce pathologic angiogenesis and fibrosis.
Project description:The model describes the mechanisms by which macrophages differentiate into a given phenotype. The model shows that both extracellular and intracellular signalling are both important for that process. More specifically, STAT1 activity favors macrophages polarization towards M1 phenotype and STAT6 activity favors macrophage polarization towards M2 phenotype. However, these polarizations are can be reversed by molecular signalling.
Project description:Macrophages polarize to divergent functional phenotypes depending on their microenvironment in a highly coordinated process of metabolic and transcriptional rewiring that is still poorly understood. We developed an Integrated Metabolomics and Gene Expression (IMAGE) profiling and analysis pipeline and applied it to extensively characterize global metabolic programs of macrophage polarization. IMAGE analysis identified 7 major (novel and known) regulatory modules responsible for metabolic rewiring during polarization, which we validated through extensive carbon and nitrogen labeling experiments. M1-specific modules included: inflammatory variant of the aspartate-arginosuccinate shunt; TCA cycle break at Idh expression accompanied by citrate accumulation and production of itaconate and fatty acid synthesis. In M2 macrophages we discovered significant role of glutamine in polarization, providing nitrogen for UDP-GlcNAc synthesis. Consistently, glutamine deprivation results in significant M2-specific defect in polarization. Our data provide, for the first time, a global view of the integrated transcriptional and metabolic changes that result in M1 and M2 polarization. Bone-marrow derived macrophages were generated from C57BL/6 mice were plated at ~100k cells per well in 96-well plate and stimulated with either Il4 or combination of LPS&IFNg or left unstimulated for 24 h mRNA was derived from lysates using Invitrogen oligo-dT beads
Project description:Macrophages perform key and distinct functions in maintaining tissue homeostasis through finely tuning their polarization state.Here, we found that tumor necrosis factor-α-induced protein 8-like 1 (TIPE1) was highly expressed in macrophages and Tipe1 depletion impeded M2 polarization of macrophages. The goals of this study are to compare BMDMs from LyzM-Cre; Tipe1f/f or Tipe1f/f mice to have a further view of the potential difference.
Project description:Macrophages polarize towards different subpopulations with distinct and partly antagonistic functions in various diseases. IFNγ/LPS-polarized M1-type macrophages can have antiangiogenic activity, whereas IL-4-induced M2-type macrophages can be proangiogenic and profibrotic. Therapeutic strategies to inhibit M2-type polarization while promoting M1-type polarization could serve to inhibit pathological angiogenesis and fibrosis. Here, by combining global quantitative time-course proteomics and phosphoproteomics with a small-molecule inhibitor screen we identify signaling events that promote specifically IL-4-induced and not IFNγ/LPS-induced macrophage polarization and found that the MEK inhibitor trametinib and the HDAC inhibitor panobinostat potently prevent M2-type macrophage polarization without inhibiting M1-type polarization. In contrast, selective B-Raf inhibition promotes M2-type polarization. Trametinib and panobinostat also blocked M2-type macrophage polarization and concomitantly angiogenesis and fibrosis in models of wound healing and neovascular age-related macular degeneration in vivo. Thus, these pharmacologic inhibitors could be utilized therapeutically to selectively block IL4-induced macrophage polarization and reduce pathologic angiogenesis and fibrosis.