Project description:In order to investigate the roles of retinoblastoma family genes during early human development, mutant H9 human embryonic stem cells were generated. Frameshift mutations were introduced in RBL1 and RBL2 genes using the CRISPR/Cas9 technology, and then the shRNA-expression cassette to knockdown RB upon tetracycline treatment was integrated. These cells were cultured in definitive endoderm differentiation conditions for 3 or 6 days with/without tetracycline.
Project description:Heterozygous and homozygous mutations were introduced to the human embryonic stem cell line H9 by using the CRISPR/Cas9-system. Since off-target effects can occur and high numbers of SNVs can be acquired during clonal selection, the generated cell lines and the parental cell line were analyzed by whole-genome sequencing.
Project description:To understand the function of MSI1 in pluripotent stem cells, RNA-seq assays were performed on mouse embryonic stem cells R1, MSI1 knockout cell line R1-C5, human embryonic stem cells H9, RRM knockout cell line H9-C8, MSI1 full-length overexpression cell line H9-MSI1OE, MSI1C variant overexpression cell line H9-MSI1 (138-362) OE , H9-MSI1(272-362)OE. RNA bound by MSI1 in R1 and H9, and MSI1C variants MSI1 (138-362), MSI1(272-362) were detected using RIP-seq.
Project description:A validation experiment performed on HEK293 cell lines after genome editing. The design contains three duplicate runs consisted of: HEK293 wild type cell line HEK293 with MIR484 gene knockdown using CRISPR-Cas9 HEK293 with MIR185 gene knockout using CRISPR-Cas9
Project description:We report transcriptome analysis of human embryonic stem cells and in vitro differentiated neural stem cells, comparing wild type H9, UGP2 homozygous knock-out and UGP2 mutant cells harboring a homozygous A>G nucleotide change affecting the start codon of UGP2 isoform 2 that was introduced by CRISPR-Cas9 engineering
Project description:UTX is a histone H3 lysine 27 demethylase required for development. However, the mechanisms underlying developmental gene regulation by UTX are unclear. Here, we discovered a molecular interaction between UTX and 53BP1 that regulates gene expression in a human neurogenesis model. Human 53BP1 contains a UTX-binding site that diverges from its mouse homolog by 41%, and our data suggest that the UTX-53BP1 interaction is conserved in primates but not rodents. ChIP-Seq revealed that the genome-wide targets of UTX and 53BP1 overlap by 84%. We used CRISPR-Cas9 to generate mutations of 53BP1 and UTX in human embryonic stem cells, and found that both 53BP1 and UTX are required to promote the expression of hundreds of neurogenic genes during neural differentiation. Further, 53BP1 is required for human neural progenitor differentiation into neurons. Our findings suggest that the UTX-53BP1 interaction controls gene expression important for neural differentiation in humans.
Project description:UTX is a histone H3 lysine 27 demethylase required for development. However, the mechanisms underlying developmental gene regulation by UTX are unclear. Here, we discovered a molecular interaction between UTX and 53BP1 that regulates gene expression in a human neurogenesis model. Human 53BP1 contains a UTX-binding site that diverges from its mouse homolog by 41%, and our data suggest that the UTX-53BP1 interaction is conserved in primates but not rodents. ChIP-Seq revealed that the genome-wide targets of UTX and 53BP1 overlap by 84%. We used CRISPR-Cas9 to generate mutations of 53BP1 and UTX in human embryonic stem cells, and found that both 53BP1 and UTX are required to promote the expression of hundreds of neurogenic genes during neural differentiation. Further, 53BP1 is required for human neural progenitor differentiation into neurons. Our findings suggest that the UTX-53BP1 interaction controls gene expression important for neural differentiation in humans.
Project description:UTX is a histone H3 lysine 27 demethylase required for development. However, the mechanisms underlying developmental gene regulation by UTX are unclear. Here, we discovered a molecular interaction between UTX and 53BP1 that regulates gene expression in a human neurogenesis model. Human 53BP1 contains a UTX-binding site that diverges from its mouse homolog by 41%, and our data suggest that the UTX-53BP1 interaction is conserved in primates but not rodents. ChIP-Seq revealed that the genome-wide targets of UTX and 53BP1 overlap by 84%. We used CRISPR-Cas9 to generate mutations of 53BP1 and UTX in human embryonic stem cells, and found that both 53BP1 and UTX are required to promote the expression of hundreds of neurogenic genes during neural differentiation. Further, 53BP1 is required for human neural progenitor differentiation into neurons. Our findings suggest that the UTX-53BP1 interaction controls gene expression important for neural differentiation in humans.